Boundary problem for the singular heat equation

Abstract

The scheme for solving of a mixed problem with general boundary conditions is proposed for a heat equation $$ a(x)\frac{\partial T}{\partial \tau}= \frac{\partial}{\partial x} \left(\lambda(x)\frac{\partial T}{\partial x}\right) $$ with coefficient $a(x)$ that is the generalized derivative of a function of bounded variation, $\lambda(x)>0$, $\lambda^{-1}(x)$ is a bounded and measurable function. The boundary conditions have the form $$ \left\{\arraycolsep=0pt \begin{array}{l} p_{11}T(0,\tau)+p_{12}T^{[1]}_x (0,\tau)+ q_{11}T(l,\tau)+q_{12}T^{[1]}_x (l,\tau)= \psi_1(\tau),\\ p_{21}T(0,\tau)+p_{22}T^{[1]}_x (0,\tau)+ q_{21}T(l,\tau)+q_{22}T^{[1]}_x (l,\tau)= \psi_2(\tau), \end{array}\right. $$ where by $T^{[1]}_x (x,\tau)$ we denote the quasiderivative $\lambda(x)\frac{\partial T}{\partial x}$. A solution of this problem seek by the reduction method in the form of sum of two functions $T(x,\tau)=u(x,\tau)+v(x,\tau)$. This method allows to reduce solving of proposed problem to solving of two problems: a quasistationary boundary problem with initial and boundary conditions for the search of the function $u(x,\tau)$ and a mixed problem with zero boundary conditions for some inhomogeneous equation with an unknown function $v(x,\tau)$. The first of these problems is solved through the introduction of the quasiderivative. Fourier method and expansions in eigenfunctions of some boundary value problem for the second-order quasidifferential equation $(\lambda(x)X'(x))'+ \omega a(x)X(x)=0$ are used for solving of the second problem. The function $v(x,\tau)$ is represented as a series in eigenfunctions of this boundary value problem. The results can be used in the investigation process of heat transfer in a multilayer plate.

Authors and Affiliations

O. Makhnei

Keywords

Related Articles

Wiman's inequality for analytic functions in D×C with rapidly oscillating coefficients

Let A2 be a class of analytic function f represented by power series of the from f(z)=f(z1,z2)=+∞∑n+m=0anmzn1zm2 with the domain of convergence T={z∈C2:|z1|<1,|z2|<+∞} such that ∂∂z2f(z1,z2)≢0 in T and there exists r0...

A multidimensional generalization of the Rutishauser qd-algorithm

In this paper the regular multidimensional C-fraction with independent variables, which is a generalization of regular C-fraction, is considered. An algorithm of calculation of the coefficients of the regular multidimens...

Divisor problem in special sets of Gaussian integers

Let $A_1$ and $A_2$ be fixed sets of gaussian integers. We denote by $\tau_{A_1, A_2}(\omega)$ the number of representations of $\omega$ in form $\omega=\alpha\beta$, where $\alpha \in A_1, \beta \in A_2$. We construct t...

On central automorphisms of crossed modules

A crossed module (T,G,∂) consist of a group homomorphism ∂:T→G together with an action (g,t)→gt of G on T satisfying ∂(gt)=g∂(t)g−1 and ∂(s)t=sts−1, for all g∈G and s,t∈T. The term crossed module was introduced by J. H...

Uniform boundary controllability of a discrete 1-D Schrödinger equation

In this paper we study the controllability of a finite dimensional system obtained by discretizing in space and time the linear 1-D Schrodinger equation with a boundary control. As for other problems, we can expect that...

Download PDF file
  • EP ID EP325082
  • DOI 10.15330/cmp.9.1.86-91
  • Views 66
  • Downloads 0

How To Cite

O. Makhnei (2017). Boundary problem for the singular heat equation. Карпатські математичні публікації, 9(1), 86-91. https://europub.co.uk/articles/-A-325082