Poincare series for the algebras of joint invariants and covariants of n quadratic forms
Journal Title: Карпатські математичні публікації - Year 2017, Vol 9, Issue 1
Abstract
We consider one of the fundamental objects of classical invariant theory, namely the Poincare series for an algebra of invariants of Lie group $SL_2$. The first two terms of the Laurent series expansion of Poincar\'e series at the point $z = 1$ give us an important information about the structure of the algebra $\mathcal{I}_{d}.$ It was derived by Hilbert for the algebra ${\mathcal{I}_{d}=\mathbb{C}[V_d]^{\,SL_2}}$ of invariants for binary $d-$form (by $V_d$ we denote the vector space over $\mathbb{C}$ consisting of all binary forms homogeneous of degree $d$). Springer got this result, using explicit formula for the Poincar\'e series of this algebra. We consider this problem for the algebra of joint invariants ${\mathcal{I}_{2n}{=}\mathbb{C} \underbrace{V_2 {\oplus} V_2 {\oplus} \cdots {\oplus} V_2}_{\text{$n$ times}} ]^{SL_2}}$ and the algebra of joint covariants ${\mathcal{C}_{2n}{=}\mathbb{C}[\underbrace{V_2 {\oplus} V_2 {\oplus} \cdots {\oplus} V_2}_{\text{$n$ times}} \oplus}\mathbb{C}^2 ]^{SL_2}}$ of $n$ quadratic forms. We express the Poincar\'e series $\mathcal{P} \mathcal{C}_{2n},z)=\sum_{j=0}^{\infty }\dim(\mathcal{C}_{2n})_{j}\, z^j$ and $\mathcal{P}(\mathcal{I}_{2n},z)=\sum_{j=0}^{\infty }\dim(\mathcal{I}_{2n})_{j}\, z^j$ of these algebras in terms of Narayana polynomials. Also, for these algebras we calculate the degrees and asymptotic behavious of the degrees, using their Poincare series.
Authors and Affiliations
N. Ilash
Application of the functional calculus to solving of infinite dimensional heat equation
In this paper we study infinite dimensional heat equation associated with the Gross Laplacian. Using the functional calculus method, we obtain the solution of appropriate Cauchy problem in the space of polynomial ultradi...
Coupled fixed point results on metric spaces defined by binary operations
In parallel with the various generalizations of the Banach fixed point theorem in metric spaces, this theory is also transported to some different types of spaces including ultra metric spaces, fuzzy metric spaces, unifo...
FG-coupled fixed point theorems in cone metric spaces
The concept of $FG$-coupled fixed point introduced recently is a generalization of coupled fixed point introduced by Guo and Lakshmikantham. A point $(x,y)\in X\times X$ is said to be a coupled fixed point of the mapping...
Some properties of branched continued fractions of special form
The fact that the values of the approximates of the positive definite branched continued fraction of special form are all in a certain circle is established for the certain conditions. The uniform convergence of branched...
Wiman's inequality for analytic functions in D×C with rapidly oscillating coefficients
Let A2 be a class of analytic function f represented by power series of the from f(z)=f(z1,z2)=+∞∑n+m=0anmzn1zm2 with the domain of convergence T={z∈C2:|z1|<1,|z2|<+∞} such that ∂∂z2f(z1,z2)≢0 in T and there exists r0...