BRAIN ANEURYSM CLASSIFICATION VIA WHALE OPTIMIZED DENSE NEURAL NETWORK

Abstract

A brain aneurysm is caused by faulty blood vessel walls. When a brain aneurysm ruptures or leaks, it can cause bleeding in the brain. It is common for brain aneurysms to not burst but to damage the body and cause symptoms. In this paper, a novel WHO-DNN model (Dense neural network optimized with Whale optimization algorithm) has been proposed to identify the types of aneurysms classes. For this classification, the segmented MRI images are used as input to advance the survival rate of patients. Initially, the segmented MRI images are pre-processed by Adaptive Median Filter (AMF) to remove the noise from the input images. Then, the textural features are extracted to generate the feature sets. The Dense Neural Network (DNN) is utilized to identify and classify the input images to discriminate types of aneurysms classes namely normal, Fusiform aneurysn, and Pseudo aneurysm. Finally, the Whale Optimization Algorithm (WHO) to improve the parameters of the DNN to attain better classification results. The competence of the proposed WHO-DNN model was determined through specific network metrics. The proposed WHO-DNN model attains a total accuracy of 98.69%, which is comparatively better than the existing techniques.

Authors and Affiliations

Ghazanfar Ali Safdar, Xiaochun Cheng

Keywords

Related Articles

CHICKEN SWARM OPTIMIZATION BASED ENSEMBLED LEARNING CLASSIFIER FOR BLACK HOLE ATTACK IN WIRELESS SENSOR NETWORK

Wireless Sensor Networks (WSNs) are an inevitable technology prevalently used in various critical and remote monitoring applications. The security of WSNs is compromised by various attacks in wireless mediums. Even thoug...

SELECTIVE FORWARDING ATTACKS DETECTION IN WIRELESS SENSOR NETWORKS USING BLUE MONKEY OPTIMIZED GHOST NETWORK

Wireless Sensor Networks (WSNs) are increasingly the technology of choice due to their wide applicability in both military and civilian domains. The selective forwarding attack, one of the main attacks in WSNs, is the ha...

REAL TIME REMOTE MONITORING VIA HORSE HEAD OPTIMIZATION DEEP LEARNING NETWORK

Over the past few decades, IoT has become indispensable in many industries. More people can now get healthcare and their general health can be improved thanks to recent developments in the healthcare sector. Predictive a...

BLOCK CHAIN ENABLED DATA SECURITY USING BLOWFISH ALGORITHM IN SMART GRID NETWORK

Smart Grid provides a reliable and efficient end-toend delivery system. Data on each user's unique electricity consumption is given in real time. It also enables utilities to control and monitor the electrical system in...

DINGO OPTIMIZED FUZZY CNN TECHNIQUE FOR EFFICIENT PROTEIN STRUCTURE PREDICTION

Protein is made up of a variety of molecules that are required by living organisms, such as enzymes, hormones, and antibodies. In step 2, the max-pooling layer and the convolutional layer evaluate the input data to creat...

Download PDF file
  • EP ID EP734882
  • DOI -
  • Views 66
  • Downloads 0

How To Cite

Ghazanfar Ali Safdar, Xiaochun Cheng (2024). BRAIN ANEURYSM CLASSIFICATION VIA WHALE OPTIMIZED DENSE NEURAL NETWORK. International Journal of Data Science and Artificial Intelligence, 2(02), -. https://europub.co.uk/articles/-A-734882