Cell-permeable, mitochondrial-targeted, peptide antioxidants
Journal Title: The AAPS Journal - Year 2006, Vol 8, Issue 2
Abstract
Cellular oxidative injury has been implicated in aging and a wide array of clinical disorders including ischemia-reperfusion injury; neurodegenerative diseases; diabetes; inflammatory diseases such as atherosclerosis, arthritis, and hepatitis; and drug-induced toxicity. However, available antioxidants have not proven to be particularly effective against many of these disorders. A possibility is that some of the antioxidants do not reach the relevant sites of free radical generation, especially if mitochondria are the primary source of reactive oxygen species (ROS). The SS (Szeto-Schiller) peptide antioxidants represent a novel approach with targeted delivery of antioxidants to the inner mitochondrial membrane. The structural motif of these SS peptides centers on alternating aromatic residues and basic amino acids (aromatic-cationic peptides). These SS peptides can scavenge hydrogen peroxide and peroxynitrite and inhibit lipid peroxidation. Their antioxidant action can be attributed to the tyrosine or dimethyltyrosine residue. By reducing mitochondrial ROS, these peptides inhibit mitochondrial permeability transition and cytochromec release, thus preventing oxidant-induced cell death. Because these peptides concentrate >1000-fold in the inner mitochondrial membrane, they prevent oxidative cell death with EC50 in the nM range. Preclinical studies support their potential use for ischemia-reperfusion injury and neurodegenerative disorders. Although peptides have often been considered to be poor drug candidates, these small peptides have excellent “druggable” properties, making promising agents for many diseases with unment needs.
Authors and Affiliations
Hazel H. Szeto
Inactivation of hepatic enzymes by inhalant nitrite—In vivo and in vitro studies
We examined the effects of acute isobutyl nitrite (ISBN) exposure on the activity of several hepatic enzymes. Two strains of adult male mice (Balb/c and C57BL/6) were exposed to 900 ppm ISBN or ambient air for 45 minutes...
The Utility of Modeling and Simulation Approaches to Evaluate Immunogenicity Effect on the Therapeutic Protein Pharmacokinetics
While therapeutic proteins (TP), particularly recombinant human proteins and fully human monoclonal antibodies, are designed to have a low immunogenic potential in humans, a clinical immune response does sometimes occur...
Compartmental Analysis and its Manifold Applications to Pharmacokinetics
The online version of this article (doi:10.1208/s12248-009-9160-x) contains supplementary material, which is available to authorized users.
Evaluation of novel particles as pulmonary delivery systems for insulin in rats
The purpose of the study was to evaluate the influence of calcium phosphate (CAP) and polyethylene glycol (PEG) particles on the systemic delivery of insulin administered by the pulmonary route. Two methods of pulmonary...
Application of the Biopharmaceutical Classification System in Clinical Drug Development—An Industrial View
The biopharmaceutical classification system (BCS) classifies compounds based on their solubility and permeability. Regulatory agencies and health organizations have utilized this classification system to allow dissolutio...