Comparative Analysis of Machine Learning Algorithms for Sentiment Analysis in Film Reviews
Journal Title: Acadlore Transactions on AI and Machine Learning - Year 2024, Vol 3, Issue 3
Abstract
Sentiment analysis, a crucial component of natural language processing (NLP), involves the classification of subjective information by extracting emotional content from textual data. This technique plays a significant role in the movie industry by analyzing public opinions about films. The present research addresses a gap in the literature by conducting a comparative analysis of various machine learning algorithms for sentiment analysis in film reviews, utilizing a dataset from Kaggle comprising 50,000 reviews. Classifiers such as Logistic Regression, Multinomial Naive Bayes, Linear Support Vector Classification (LinearSVC), and Gradient Boosting were employed to categorize the reviews into positive and negative sentiments. The emphasis was placed on specifying and comparing these classifiers in the context of film review sentiment analysis, highlighting their respective advantages and disadvantages. The dataset underwent thorough preprocessing, including data cleaning and the application of stemming techniques to enhance processing efficiency. The performance of the classifiers was rigorously evaluated using metrics such as accuracy, precision, recall, and F1-score. Among the classifiers, LinearSVC demonstrated the highest accuracy at 90.98%. This comprehensive evaluation not only identified the most effective classifier but also elucidated the contextual efficiencies of various algorithms. The findings indicate that LinearSVC excels at accurately classifying sentiments in film reviews, thereby offering new insights into public opinions on films. Furthermore, the extended comparison provides a step-by-step guide for selecting the most suitable classifier based on dataset characteristics and context, contributing valuable knowledge to the existing literature on the impact of different machine learning approaches on sentiment analysis outcomes in the movie industry.
Authors and Affiliations
Mohamed Cherradi, Anass El Haddadi
Comparative Analysis of Machine Learning Algorithms for Sentiment Analysis in Film Reviews
Sentiment analysis, a crucial component of natural language processing (NLP), involves the classification of subjective information by extracting emotional content from textual data. This technique plays a significant ro...
Integrating Long Short-Term Memory and Multilayer Perception for an Intelligent Public Affairs Distribution Model
In the realm of urban public affairs management, the necessity for accurate and intelligent distribution of resources has become increasingly imperative for effective social governance. This study, drawing on crime data...
Performance Evaluation of ANN Models for Prediction
One of the biggest problems that humans are faced with today is pollution and climate change. Pollution is not a new phenomenon and remains a leading cause of diseases and deaths. Mining, industrialization, exploration a...
A Dual-Selective Channel Attention Network for Osteoporosis Prediction in Computed Tomography Images of Lumbar Spine
Osteoporosis is a common systemic bone disease with insidious onset and low treatment efficiency. Once it occurs, it will increase bone fragility and lead to fractures. Computed tomography (CT) is a non-invasive medical...
Multi-Variable Time Series Decoding with Long Short-Term Memory and Mixture Attention
The task of interpreting multi-variable time series data, while also forecasting outcomes accurately, is an ongoing challenge within the machine learning domain. This study presents an advanced method of utilizing Long S...