Comparative Assessment of Colon Cancer Classification Using Diverse Deep Learning Approaches
Journal Title: Journal of Data Science and Intelligent Systems - Year 2023, Vol 1, Issue 2
Abstract
Colon cancer is a general form of avoidable cancer, which is also widely spread across the globe. It is also a leading cancer and considered as big killer among all kinds of cancers. In recent times, significant advances are developed in treatment field of this frequently causing disease. In this research several deep learning techniques namely convolutional neural network (CNN), recurrent neural network (RNN), transfer learning, AlexNet and GoogLeNet are compared for colon cancer classification. Pre-processing is conducted utilizing median filter for removing noises from an input colon cancer image. The filtered image is then segmented using SegNet, which is utilized to segment the affected portions. Finally, classification of colon cancer is conducted employing various deep learning approaches like CNN, RNN, transfer learning, AlexNet and GoogLeNet. The comparative assessment showed GoogLeNet as the best classifier for colon cancer classification with maximal values of accuracy as 94.165, sensitivity as 97.589 and specificity as 87.359 respectively for 60% training data.
Authors and Affiliations
V. T. Ram Pavan Kumar , M. Arulselvi, K. B. S. Sastry
An Experimental Private Small Hydropower Plant Investments Selection Classification System
Investment selection problems and models are crucial for humans, communities, and states. Private small hydroelectric power/ hydropower plant investments (PSHPPIs) selection problem is a unique one in those problems and...
Symmetric Kernel-Based Approach for Elliptic Partial Differential Equation
In this work, two globally supported and positive definite radial kernels: generalized inverse multiquadric and linear Laguerre Gaussian radial kernels were used to construct symmetric kernel-based interpolating scheme u...
Topological Data Analysis of COVID-19 Using Artificial Intelligence and Machine Learning Techniques in Big Datasets of Hausdorff Spaces
In this paper, we carry out an in-depth topological data analysis (TDA) of COVID-19 pandemic using artificial intelligence (AI) and Machine Learning (ML) techniques. We show the distribution patterns of pandemic all over...
A Study of the Effects of the Shape Parameter and Type of Data Points Locations on the Accuracy of the Hermite-Based Symmetric Approach Using Positive Definite Radial Kernels
Theoretical approximation ideas served as the driving force behind the research. one can see that the shape parameter's behavior is driven by the kind of problem and the analytical standards that are applied. the primary...
Models and Techniques for Domain Relation Extraction: A Survey
As the significant subtask of information extraction, relation extraction (RE) aims to identify and classify semantic relations between pairs of entities and is widely adopted as the foundation of downstream applications...