Comparison of the influence of halothane and isoflurane on airway transepithelial potential difference.
Journal Title: Pharmacological Reports - Year 2006, Vol 58, Issue 5
Abstract
Bidirectional transport of Na(+) and Cl(-) ions by the epithelium controls production and composition of airway surface liquid and airway transepithelial potential difference and in these ways supports mucociliary transport. Volatile anesthetics are able to inhibit epithelial ion transport processes when applied at high concentration and have been suggested to elicit depression of airway clearance and both these effects could be involved in postoperative pulmonary complications. The goal of these studies was to reveal possible influence of halothane and isoflurane at lower concentrations on electrogenic ion transport in airway epithelium. These studies were performed on the isolated rabbit tracheal wall mounted in the Ussing chamber. The reaction of the preparation to the gentle mechanical stimulation performed as a jet flux was examined without or in the presence of anesthetics at concentration equivalent to 0.5 minimal anesthetic concentration of volatile anesthetics in pulmonary alveoli (MAC), 1 MAC, 2 MAC, 5 MAC and 10 MAC. The volatile anesthetics at concentrations equivalent to 5 and 10 MAC affected airway transepithelial potential difference and influenced hyperpolarization or depolarization reactions which occurred after mechanical stimulation. The above effects were present when Na(+) transport was inhibited by amiloride. The disturbed epithelial Cl(-) transport may be proposed as an explanation of the action of volatile anesthetics on electrophysiological parameters of the isolated tracheal wall although the influence of anesthetics on tachykinin secretion from C-fiber endings, which are present in the preparation, should also be taken into consideration. The long-lasting action (tens of minutes) of volatile anesthetics on the isolated tracheal wall should be also studied in the future as a model of airway reaction to prolonged volatile anesthesia.
Authors and Affiliations
Piotr Smuszkiewicz, Leon Drobnik, Jan Mieszkowski, Artur Konikowski, Iga Hołyńska, Tomasz Tyrakowski
Anxiolytic action of group II and III metabotropic glutamate receptors agonists involves neuropeptide Y in the amygdala.
Several lines of evidence indicate that activation of group II and III metabotropic glutamate (mGlu) receptors produces anxiolytic-like effects in rodents. On the other hand neuropeptide Y (NPY) induces an anxiolytic eff...
IFN-γ suppresses the high glucose-induced increase in TGF-β1 and CTGF synthesis in mesangial cells.
Mesangial cells are the main source of renal interstitial fibrosis in diabetic nephropathy (DN). Interferon-γ (IFN-γ) is a key cytokine that may play a potential therapeutic role in reducing fibrosis. Here, we focus on t...
Strong antioxidant activity of carane derivatives.
Oxidants play a significant role in causing oxidative stress, which underlies the pathogenesis of inflammation and rheumatoid arthritis. The processes associated with inflammatory responses are complex and often involve...
Professor Alfons Chodera, Ph.D., M.D. (1925-2005).
Impact of early-life stress on the medial prefrontal cortex functions - a search for the pathomechanisms of anxiety and mood disorders.
Although anxiety and mood disorders (MDs) are the most common mental diseases, the etiologies and mechanisms of these psychopathologies are still a matter of debate. The medial prefrontal cortex (mPFC) is a brain structu...