Controlling plasmon-exciton interactions through photothermal reshaping

Journal Title: Opto-Electronic Advances - Year 2020, Vol 3, Issue 1

Abstract

We investigated the plasmon-exciton interactions in an individual gold nanorod (GNR) with monolayer MoS2 at room temperature with the single-particle spectroscopy technique. To control the plasmon-exciton interaction, we tuned the local surface plasmon resonance of an individual GNR in-situ by employing the photothermal reshaping effect. The scattering spectra of the GNR-MoS2 hybrids exhibited two dips at the frequencies of the A and B excitons of monolayer MoS2, which were caused by the plasmon-induced resonance energy transfer effect. The resonance energy transfer rate increased when the surface plasmon resonance of the nanorod matched well with the exciton transition energy. Also, we demonstrated that the plasmon-enhanced fluorescence process dominated the photoluminescence of the GNR-MoS2 hybrid. These results provide a flexible way to control the plasmon-exciton interaction in an all-solid-state operating system at room temperature.

Authors and Affiliations

Aiqin Hu, Shuai Liu, Jingyi Zhao, Te Wen, Weidong Zhang, Qihuang Gong, Yongqiang Meng, Yu Ye, Guowei Lu*

Keywords

Related Articles

On-chip readout plasmonic mid-IR gas sensor

Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change. Here a novel mid-IR plasmonic gas sensor wit...

Optofluidics: the interaction between light and flowing liquids in integrated devices

Optofluidics is a rising technology that combines microfluidics and optics. Its goal is to manipulate light and flowing liquids on the micro/nanoscale and exploiting their interaction in optofluidic chips. The fluid flow...

Enhancement of laser ablation via interacting spatial double-pulse effect

A novel spatial double-pulse laser ablation scheme is investigated to enhance the processing quality and efficiency for nanosecond laser ablation of silicon substrate. During the double-pulse laser ablation, two splitted...

850/940-nm VCSEL for optical communication and 3D sensing

This paper is going to review the state-of-the-art of the high-speed 850/940-nm vertical cavity surface emitting laser (VCSEL), discussing the structural design, mode control and the related data transmission performance...

Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated

One of the bottleneck issues for commercial scale-up of Ti additive manufacturing lies in high cost of raw material, i.e. the spherical Ti powder that is often made by gas atomization. In this study, we address this sign...

Download PDF file
  • EP ID EP683123
  • DOI 10.29026/oea.2020.190017
  • Views 165
  • Downloads 0

How To Cite

Aiqin Hu, Shuai Liu, Jingyi Zhao, Te Wen, Weidong Zhang, Qihuang Gong, Yongqiang Meng, Yu Ye, Guowei Lu* (2020). Controlling plasmon-exciton interactions through photothermal reshaping. Opto-Electronic Advances, 3(1), -. https://europub.co.uk/articles/-A-683123