Design and Evaluation of Two New Biomimetic Blades for Reducing the Shear Energy Required for Cutting Herbal Plants
Journal Title: Journal of Agricultural Machinery - Year 2019, Vol 9, Issue 2
Abstract
Introduction Optimizing the energy consumption in mechanized agriculture is becoming more important due to the limited energy sources in the world. In this regard, optimization of the cutting blades is presented in this study by modifying the geometric form of the blade to reduce the forage cutting energy. Hence, two new blades, inspired by the geometric profiles of front claws of mole crickets and teeth of grasshoppers were designed and built using the biomimetic method (the method for transferring biological solutions to the engineering ones). Finally, the new biomimetic blades were tested and compared with two other conventional blades (flat and bent blades) by cutting 8 different types of crops and weeds. Â Materials and Methods The main idea of building one of the blades was inspired by the geometric forms of mole crickets' scissors-like front legs and lower teeth of grasshoppers. Therefore, five adult mole crickets and five grasshoppers were collected from a farm in Kalat-e Naderi, Khorasan Razavi Province. In the next step, different images were captured from the front leg of mole cricket and tooth of grasshopper using the stereomicroscope (Nikon, SMZ-U, Japan). In the next step, the images were transferred to the image analysis software (Image J) and the boundary lines of images were selected. Then, the selected boundary lines were imported to SolidWorks software and the points on the selected curve were extracted. The obtained points were drawn in Matlab software and several fitting curves for the points were examined, e.g., Fourier function, Gaussian function, and polynomial function. According to the obtained results, the Gaussian profile was selected to design the blade with the highest correlation coefficient (R2=0.99), see Fig. 1d. To design the desired blade, a section of the Gaussian curve between points A and B were used. Finally, the biomimetic blade of the mole cricket and grasshopper were drawn in SolidWorks software (Fig. 1e). After designing the blades in the SolidWorks software, the biomimetic blades were built by a CNC machine. Results and Discussion In all the treatments, a significant difference was observed between the biomimetic blades and the conventional flat and bent blades according to the results of Tukey's test at the level of 5%. The obtained results showed that there was no significant difference between the mole cricket and grasshopper blades at the level of 5% for cutting. According to the results obtained in this study, there was a significant difference at the level of 5% between the grasshopper and flat blades for cutting alfalfa, clover, amaranth, orach, and poaceae; as well as between the grasshopper and bent blades for cutting alfalfa, clover, nutsedge, and amaranth, also between mole cricket and flat blades for cutting alfalfa, clover, purslane, amaranth, orach, paddy, and poaceae and finally between mole cricket and flat blades in cutting alfalfa, clover, nutsedge, amaranthus, and paddy. In this regard, no significant difference at the level of 5% was observed between the flat and bent blades for all cutting treatment. The batches containing 6 stems were used for cutting the soft stems with low shear stress and the batches containing 4 stems were used for cutting thick stems with high shear stress. Conclusion The results obtained in this study indicated that the geometrical form of the blade has a significant influence on the amount of required shear energy. The mole cricket biomimetic blade reduced the cutting energy compared to the flat blade by 23.37% to 52.51% (with the mean of 39.11%) and compared to the bent blade by 10.46% to 52.46% (with the mean of 32.8%). The grasshopper biomimetic blade also reduced the cutting energy compared to the flat blade by 15.78% to 53.82% (with the mean of 33.59%) and compared to the bent blade by 2% to 46.29% (with the mean of 27.87%). According to the results of this study, the mole cricket biomimetic blade showed better performance in comparison with the grasshopper biomimetic blade for cutting the plants and as a final result could be recommended to build the plant cutting blades.
Authors and Affiliations
H. Dehghan-Hesar,D. Kalantari,
Assessment of Mechanical Damage on Olive Fruit under Impact Loading
Introduction The olive fruit (Olea europaea L.) is so sensitive to impact like many other crops that would lead to mechanical damage and bruising which reduce the quality of it. The olive fruit damage includes a brownish...
Evaluation and Optimization of Energy and Environmental Indicators Using Life Cycle Assessment and Data Envelopment Analysis(Case Study: Industrial Cattle Farms in Northern Khuzestan)
Introduction: Environmental crises and resource depletion have adversely affected environmental resources and food security in the world. Therefore, with the global population growth in the coming years and the rising ne...
Investigation of Energy Use Efficiency for Dry Wheat Production Using Data Envelopment Analysis (DEA) Approach; Case Study: Silakhor Plain
In this research energy efficiency for dry wheat production in three levels including 0.1 up to2, 2.1 up to 5 and over 5.1 hectares for the farming year 2008-2009 in Silakhor plain located in Borujerd and Dorud divisions...
Technical and Economic Feasibility of Using Solar Energy to Provide Heat Load to a Poultry House
IntroductionIn the poultry industry, reducing energy consumption is essential for reducing costs. Energy requirements in the poultry industry include heating, cooling, lighting, and power line energy. Identifying factors...
Viscoelastic modeling of apples under quasi-static loading using finite element method to investigate the causes of bruising
Introduction: Apple is one of the most important horticultural crops of Iran. Its production in the country stands in the second place after citrus. Iran holds the fourth place in the world production of apples and gains...