Design Forecasting of Thermal Strength and Resource of Steam Turbine structural Components
Journal Title: Проблеми машинобудування - Year 2018, Vol 21, Issue 3
Abstract
Effective and reliable operation of power units is closely connected with the provision of the thermal strength and durability of their elements and components. The needs of the modern energy market lead to the operation of equipment in variable modes, which causes accelerated wear-out of its resource. The problem of extending the resource of power equipment is becoming increasingly important due to the fact that its ageing processes outstrip its replacement rate. Therefore, in order to ensure the reliable operation of power units, a calculated estimate of the thermal stability and durability of their elements is essential, based on the application of new methods and calculation models, taking into account a number of important factors (damageability, material property heterogeneity, contact interactions, presence of cracks, influence of non-stationary temperature fields, etc.) The paper gives an overview of methodical and software as well as the results of the calculated research of the thermal strength, resource and crack resistance of steam turbine elements, which have been performed at A. Podgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine during the last 15 years. The calculated estimate of the resource of power unit parts and components, as well as substantiation of the possibility of its extension were performed within the framework of the normative document developed by the authors of this paper for determining the estimated resource and survivability of rotors and turbine structural units with more reasonable reserve coefficients. The developed methodical ware allowed us to make calculations of steam turbine elements in newly specified formulations, taking into account the peculiarities of real operating conditions. The developed computerized system for diagnosing the thermal-stress state and wear-out of high-temperature steam turbine rotor resources, taking into account the real operating modes of turbine units, obtained on the basis of the parameters of the automatic control system of technological processes, allows one to more accurately estimate the time of their trouble-free operation. Formulations and a brief analysis of the results of the considered problems of thermal strength and resource of turbine elements are presented.
Authors and Affiliations
Nikolay Shulzhenko, Pavel Gontarovskiy, Nataliya Garmash, Irina Melezhik
Stressed State in a Finite Cylinder with a Circular Crack at Non-stationary Torsion
This paper considers a solution to an axially symmetric dynamic problem of determining the stress-state in the vicinity of a circular crack in a finite cylinder. The cylinder lower base is rigidly fixed, and the upper on...
Modeling Crack Initiation in a Composite Under Bending
It is known that multi-component structures are more reliable and durable than homogeneous ones. At the design stage of new structures from composite materials, it is necessary to take into account the cases when cracks...
Thermal and Stress State of the Steam Turbine Control Valve Casing, with the Turbine Operation in the Stationary Modes
The purpose of this paper is to determine the most stressful zones and assess the possibility of plastic deformations of the control valve casing in its crack forma-tion zones, with the K-325 steam turbine operation in t...
Vibration Features of Titanium Alloy Blades with Erosive Damages
This paper deals with erosive damage influence on the vibration features of the working blades of the fifth-stage of the low pressure cylinder (LPC) of a K-1000-60/3000 steam turbine for a nuclear power plant (NPP). The...
First basic elasticity theory problem in a half-space with several parallel round cylindrical cavities
When designing different kinds of structures and forecasting the strength of mine workings in rock and geotechnical mechanics, there occur problems in which it is necessary to know the stress-strain state of a half-space...