Determining the Polymer Threshold Amount for Achieving Robust Drug Release from HPMC and HPC Matrix Tablets Containing a High-Dose BCS Class I Model Drug: In Vitro and In Vivo Studies

Journal Title: AAPS PharmSciTech - Year 2015, Vol 16, Issue 2

Abstract

It is challenging to achieve mechanically robust drug-release profiles from hydrophilic matrices containing a high dose of a drug with good solubility. However, a mechanically robust drug release over prolonged period of time can be achieved, especially if the viscosity and amount of the polymer is sufficiently high, above the “threshold values.” The goal of this research was to determine the hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) polymer threshold amount that would enable robust drug release from matrix tablets containing a high dose of levetiracetam as a class I model drug according to the Biopharmaceutical Classification System (BCS). For this purpose, formulations containing HPC or HPMC of similar viscosity range, but in different amounts, were prepared. Based on the dissolution results, two final formulations were selected for additional in vitro and in vivo evaluation to confirm the robustness and to show bioequivalence. Tablets were exposed to various stress conditions in vitro with the use of different mechanically stress-inducing dissolution methods. The in vitro results were compared with in vivo results obtained from fasted and fed bioequivalence studies. Under both conditions, the formulations were bioequivalent and food had a negligible influence on the pharmacokinetic parameters Cmax and area under the curve (AUC). It was concluded that the drug release from both selected formulations is mechanically robust and that HPC and HPMC polymers with intrinsic viscosities above 9 dL/g and in quantities above 30% enable good mechanical resistance, which ensures bioequivalence. In addition, HPC matrices were found to be more mechanically robust compared to HPMC.

Authors and Affiliations

Uroš Klančar, Saša Baumgartner, Igor Legen, Polona Smrdel, Nataša Jeraj Kampuš, Dejan Krajcar, Boštjan Markun, Klemen Kočevar

Keywords

Related Articles

Development of Solid Self-Emulsifying Formulation for Improving the Oral Bioavailability of Erlotinib

To improve the solubility and oral bioavailability of erlotinib, a poorly water-soluble anticancer drug, solid self-emulsifying drug delivery system (SEDDS) was developed using solid inert carriers such as dextran 40 and...

A Non-invasive Method for the Determination of Liquid Injectables by Raman Spectroscopy

The online version of this article (doi:10.1208/s12249-015-0286-0) contains supplementary material, which is available to authorized users.

Development and Evaluation of Ca+ 2Ion Cross-Linked Carboxymethyl Xanthan Gum Tablet Prepared by Wet Granulation Technique

The objective of this work was to study the release behavior of prednisolone from calcium-cross-linked carboxymethyl xanthan gum (CMXG) tablets in dissolution medium having different pH values prevailing in the gastroint...

Biodegradable Injectable In Situ Implants and Microparticles for Sustained Release of Montelukast: In Vitro Release, Pharmacokinetics, and Stability

The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM)...

Hydrogels Composed of Cyclodextrin Inclusion Complexes with PLGA-PEG-PLGA Triblock Copolymers as Drug Delivery Systems

Although conventional pharmaceuticals have many drug dosage forms on the market, the development of new therapeutic molecules and the low efficacy of instant release formulations for the treatment of some chronic disease...

Download PDF file
  • EP ID EP682214
  • DOI  10.1208/s12249-014-0234-4
  • Views 87
  • Downloads 0

How To Cite

Uroš Klančar, Saša Baumgartner, Igor Legen, Polona Smrdel, Nataša Jeraj Kampuš, Dejan Krajcar, Boštjan Markun, Klemen Kočevar (2015). Determining the Polymer Threshold Amount for Achieving Robust Drug Release from HPMC and HPC Matrix Tablets Containing a High-Dose BCS Class I Model Drug: In Vitro and In Vivo Studies. AAPS PharmSciTech, 16(2), -. https://europub.co.uk/articles/-A-682214