Differences in static and dynamic bike fit with 3d motion capture

Journal Title: Journal of Science and Cycling - Year 2014, Vol 3, Issue 2

Abstract

Background: Bicycle fitting is the adjustment of bicycle configuration to suit rider requirements through appropriate placement of contact points; pedals, saddle and handlebars (Burke 1994: Clin Sports Med, 13(1), 1-14). Traditional fitting uses static assessment of parameters such as knee angle through the bottom of the pedal stroke and saddle setback measured by knee over pedal horizontal separation (KOPS) (Holmes et al., 1994: Clinics in Sports Medicine 13(1), 187). Dynamic fitting is now increasingly popular through video analysis or 3d motion capture. However no comparison has been made of differences between static and dynamic measurement or assessment reported of the reliability of motion capture for bicycle fitting. Purpose: To investigate the repeatability of key bike fitting kinematic parameters and differences between static and dynamic conditions. Methods: 15 subjects performed repeated motion capture trials over three sessions in both static and dynamic conditions. Markers were applied to anatomical landmarks and kinematics collected using a Vicon 3d motion capture system. Results: Typical intra-session errors for angular parameters ranged from 1.7° (4.2°) for dynamic (static) knee flexion to 4.2° (4.9°) for ankle plantarflexion. Typical error for KOPS was 6.6 mm (12 mm). Significant (p<0.001) differences between static and dynamic conditions were observed for all parameters. Knee flexion was 5.4° greater in dynamic conditions (95% CI 3.5°, 7.4°). Corresponding dynamic ankle plantarflexion was 7.8° greater (5.9°, 9.6°) and hip flexion 5.1° greater (3.8°, 6.5°). KOPS was 7.7 mm further forward in dynamic conditions (3.3, 12.1) and dynamic ankle plantarflexion at KOPS was 3.6° greater (1.8°, 5.4°). Discussion: Typical errors showed moderate repeatability indicating the system was fit for purpose but these errors require consideration in the fitting process. Differences between static and dynamic parameters appear to originate at the ankle, with a tendency for riders to drop their heels when stationary. Conclusion: Common guidance to fit to a knee angle between 25-35° should be adjusted to 30-40° for dynamic measurement.

Authors and Affiliations

M Corbett| Institute of Sport and Exercise Science, University of Worcester, United Kingdom, J Bevins| Institute of Sport and Exercise Science, University of Worcester, United Kingdom

Keywords

Related Articles

Wearable multi-sensor system for embedded body position and motion analysis during cycling

Purpose: The purpose of this study was to validate the AREM system in laboratory conditions. AREM is an embedded electronic system for motion tracking and movement analysis, based on Micro Electro Mechanical Systems (MEM...

O2score device: analysis of the kinetics of recovery after exercise

The O2Score system was recently developed as a mobile device able to measure the quantity of antioxidants in the body. Since the quantity of antioxidants is modified during effort (to provide a defense system against fre...

Torso and facial/head pre-cooling and anaerobic cycling performance in a hot and humid environment

It has been demonstrated that cooling athletes before (pre-cooling) enabled a higher level of power output developed during exercise (Tyler et al., 2015, British Journal of Sports Medicine, 47, 7-13), increased thermal c...

Reliability and Construct Validity of the Malay Version of the Cyclist Motivation Instrument (CMI)

With the increase interest in cycling, there is a need to understand what motivate cyclist to cycle. The Cyclist Motivation Instrument (CMI) has been shown to be a valid and reliable instrument to measure the motivation...

The effect of aerodynamic characteristics on the drafting effect in track cycling

Since the aim of the men’s team pursuit is to accomplish a distance of 4000m as fast as possible, reducing aerodynamic drag by means of drafting can attribute in achieving this goal. Broker et al.1 quantified the average...

Download PDF file
  • EP ID EP2841
  • DOI -
  • Views 376
  • Downloads 26

How To Cite

M Corbett, J Bevins (2014). Differences in static and dynamic bike fit with 3d motion capture. Journal of Science and Cycling, 3(2), 0-0. https://europub.co.uk/articles/-A-2841