Discussion on seepage governing equations for low permeability reservoirs with a threshold pressure gradient
Journal Title: Advances in Geo-Energy Research - Year 2018, Vol 2, Issue 3
Abstract
Low permeability reservoirs account for an increasing proportion of oil production. Threshold pressure gradient is an important factor that governs the flow in low permeability porous media. The 1-D seepage governing equation (SGE) for low permeability porous media can be derived from the 1-D core flooding experimental rule. In the literature, for isotropic porous media, the SGE with a threshold pressure gradient (TPG) in Cartesian and cylinder coordinate systems are incompatible to each other. In addition, irrational results were found in simulation using SGEs in the Cartesian coordinate system. In this study, 3-D SGEs with a TPG in the Cartesian coordinate system and for radial flow in the cylindrical coordinate system are derived from the vector form of the seepage velocity in 3-D domain which is transformed from the 1-D seepage velocity vector. The 1-D equation degenerated from the 3-D SGE of low permeability media is in accordance with the 1-D SGE. The derived SGE of low permeability porous media in Cartesian coordinate systems is consistent with that in cylindrical coordinate systems. So, the contradiction of SGEs with a TPG in literature is resolved. For anisotropic reservoirs with a TPG, with the assumption that the impeding of a TPG to flow in porous media occurs in the opposite direction of the seepage velocity vector, the general seepage initiation condition for anisotropic porous media with a TPG is derived. The SGEs for anisotropic porous media with a TPG under a specific condition in Cartesian coordinate systems and for radial flow in cylindrical coordination the systems are derived, and then are degenerated to isotropic cases. It is found that a simple form of the SGE in anisotropic porous media with a TPG can only be derived when the flow is radial. So, it is suggested that numerical simulations for anisotropic porous media with a TPG should use the equation set composed by the pressure and seepage velocity vector. The analysis also indicates that a TPG of anisotropic reservoirs is a two-order tensor, and cannot be represented by a vector. However, the current form of effective pressure gradient requires further investigation.
Authors and Affiliations
Guofeng Han, Yuewu Lin, Kumar Nawnit, Yingfang Zhou
The study of relative permeability and residual gas saturation at high pressures and high temperatures
This paper presents the results of laboratory investigation conducted with reservoir rock plugs recovered from the Gas reservoir in the North West Shelf of Western Australia. The experiments were conducted in reservoir c...
Coalbed methane recovery from multilateral horizontal wells in Southern Qinshui Basin
Since 2006, more than 80 multilateral horizontal wells have been drilled in Panzhuang block, Southern Qinshui Basin. In this paper, 6 typical wells in a region are selected as an example. The thickness of coal, gas conte...
Review on recent liquefied natural gas cold energy utilization in power generation cycles
Liquefied natural gas (LNG) needs to be gasified before supplied to the users, and considerable amount of cold energy, about 830 kJ/kg, will be released during this process. Recovery of LNG cold energy bears significance...
A transparent Open-Box learning network provides insight to complex systems and a performance benchmark for more-opaque machine learning algorithms
It is now commonplace to deploy neural networks and machine-learning algorithms to provide predictions derived from complex systems with multiple underlying variables. This is particularly useful where direct measurement...
Pore-scale remaining oil distribution under different pore volume water injection based on CT technology
A water-injection experiment was performed on a water-wet reservoir core plug that was filled with brine first and then displaced by synthetic oil. A X-ray Computed Tomography (CT) was used to take snapshots of the proce...