Disintegration Mediated Controlled Release Supersaturating Solid Dispersion Formulation of an Insoluble Drug: Design, Development, Optimization, and In Vitro Evaluation
Journal Title: AAPS PharmSciTech - Year 2015, Vol 16, Issue 1
Abstract
The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was designed based on the fact that an amorphous drug can crystallize out from hydrophilic matrices. For this study, cilostazol (CIL) was selected as the model drug, as it exhibits poor aqueous solubility. An amorphous solid dispersion was prepared to assist the drug to attain a supersaturated state. Povidone was used as carrier for solid dispersion (spray drying technique), hydrogenated vegetable oil (HVO) as wax matrix former, and sodium carboxymethyl cellulose (NaCMC) as a disintegrant. The extreme vertices mixture design (EVMD) was applied to optimize the designed and developed composition. The optimized formulation provided a dissolution pattern which was equivalent to the predicted curve, ascertaining that the optimal formulation could be accomplished with EVMD. The release profile of CIL was described by the Higuchi’s model better than zero-order, first-order, and Hixson-Crowell’s model, which indicated that the supersaturation state of CIL dominated to allow drug release by diffusion rather than disintegration regulated release as is generally observed by Hixson-Crowell’s model. The optimized composition was evaluated for disintegration, dissolution, XRD, and stability studies. It was found that the amorphous state as well as the dissolution profile of CIL was maintained under the accelerated conditions of 40°C/75% RH for 6 months.
Authors and Affiliations
Sanjay Verma, Varma S. Rudraraju
Effects of Temperature and Humidity on Laser Diffraction Measurements to Jet Nebulizer and Comparison with NGI
Laser diffraction (LD) and next generation impactor (NGI) are commonly used for the evaluation of inhaled drug formulations. In this study, the effect of temperature and humidity on the assessment of the nebulizer partic...
Mixed Polyethylene Glycol-Modified Breviscapine-Loaded Solid Lipid Nanoparticles for Improved Brain Bioavailability: Preparation, Characterization, and In Vivo Cerebral Microdialysis Evaluation in Adult Sprague Dawley Rats
Breviscapine is used in the treatment of ischemic cerebrovascular diseases, but it has a low bioavailability in the brain due to its poor physicochemical properties and the activity of P-glycoprotein efflux pumps located...
Coatings of Eudragit® RL and L-55 Blends: Investigations on the Drug Release Mechanism
In a previous study, generally lower drug release rates from RL:L55 blend coated pellets in neutral/basic release media than in acidic release media were reported. The aim of this study was to obtain information on the d...
Solid-State Interactions at the Core-Coat Interface: Physicochemical Characterization of Enteric-Coated Omeprazole Pellets Without a Protective Sub-Coat
Conventionally, scanning electron or transmission microscopy, Raman and near infrared (NIR) spectroscopy, terahertz, florescence, and nuclear magnetic resonance imaging have been used to characterize functional coating s...
Whey Protein/Polysaccharide-Stabilized Oil Powders for Topical Application—Release and Transdermal Delivery of Salicylic Acid from Oil Powders Compared to Redispersed Powders
Oil-in-water (o/w) emulsions are commonly converted into solid-like powders in order to improve their physical and chemical stabilities. The aim of this study was to investigate whether whey protein/polysaccharide-stabil...