Дослідження фізичної моделі процесу вимірювання об’єму газу турбінними лічильниками методом Монте-Карло

Journal Title: Математичне моделювання - Year 2016, Vol 1, Issue 2

Abstract

INVESTIGATION OF THE PHYSICAL MODEL OF THE PROCESS GAS MEASUREMENTTURBINE METERS MONTE CARLO Klochko N.B., Chehovskiy S.A., Slabinoha M.O. Abstract The article is devoted to the practical apply of mathematical modeling methods of physical processes, such as method Monte Carlo. Basing on the model of axial turbine gas meters there were obtained the values of the K factor physical model which were used for plotting and calculation the density distribution of the confidence interval of K factor. Turbine gas meters are widely uses in engineering practice. Easy installation and operation coupled with high reliability and accuracy are sufficient for their use in solving engineering problems. However, in actual use of turbine gas meters there are opposing forces that change the ratio of angular velocity to a value of volumetric flow. The main parameter of turbine flow meters during calibration is a K factor. That is why, the authors propose to undertake a changing range prediction to determine the theoretically possible limit values of K factor. The purpose of the Monte Carlo method in our case is to minimize an effort and resources of cumbersome mathematical expressions calculation that will predict the limits of K factor. In our case, when it comes to the physical model of measuring the volumetric flow by turbine flow meters it is necessary to simulate the measurement process by simulating changes of input parameters, set their distribution law, and the range of values. Thus, experimental studies of turbine flow meters we replace by statistical model housing process. As a result of checking all the possible combinations of input each time we get a new model for measuring value. This set of implementations can be used as artificial obtained statistical data and are able to be processed by conventional methods of mathematical statistics. The results of co-weight coefficient shows that the greatest impact on the mathematical model of turbine flow meters have geometric parameters and the Strouhal number. Therefore, to improve the accuracy of measurement results it is advisable to consider the flow parameters in the assessment of total error. As a result of statistical processing of simulation data sample set we have got a distribution model of turbine gas meters which is normal, and confidence limits are 26,526.01 imp / m3 ≤ K ≤ 26846,9 imp / m3. Application of Monte Carlo method gave the possibility to evaluate the distribution law of turbine gas meters and found confidence limits of K factor for turbine gas meter G250 across the measurement range. This lets you to control the limits of K factor during its verification or calibration. References [1] R.E. Thompson. Turbine flowmeter performance model / R/E/ Nhompson, J. Grey // Trans. ASME, J. Basic Eng. – 1970. – 92 (4). – 712–723 р. [2] Klochko N.B. Udoskonalennia metodiv ocinyucvannia tochnosti turbinnyh lichylnykiv gasu. Diss. kand. techn. Nauk [Improving of methods for assessing the accuracy of turbine gas meters. Kand. techn. sci. Diss.]. Ivano-Frankivsk, 2014. 158 p. [3] Statistical interpretation of data – Part 8: Determination of prediction intervals (ISO 16269-8:2004,IDT) – [valid from 2004-09-30]. – Intarnational Standart Organization, 2004. – 108p. – (International Standart). [4] Dolishnia N.B. Vdoskonalennya alhorytmu opratsyuvannya rezul□tativ vymiryuvannya vytraty pryrodnoho hazu turbinnym lichylnykom hazu [Improving the processing algorithm of the measurement results for turbine gas meters]. Naftogazova energetyka, 2012, no 2(18), pp.127–131. [5] Klochko N.B., Dolishniy B.V., Pindus N.M., Chekhovskiy S.A. Optymizatsiya alhorytmu opratsyuvannya vymiryuval□noyi informatsiyi turbinnykh lichyl□nykiv hazu pry yikh kalibruvanni [Algorithm optimization of processing measurement data of turbine gas meters in their calibration]. Systemy obrobky informatsiyi, 2016, no. 6,pp. 58–61. [6] Wadlow D. Chapter 28.4 Turbine and vane flowmeters / Wadlow D., Webster J.G. // The Measurement, Instrumentation and Sensors Handbook. – Boca Raton, FL: CRC Press. – Dec. 1998. (references) статья в сборнике на английском языке.

Authors and Affiliations

Н. Б. Клочко, С. А. Чеховський, М. О. Слабінога

Keywords

Related Articles

Моделирование ближнего порядка аморфных сплавов металл-металлоид

MODELING OF THE SHORT–RANGE ORDER AMORPHY ALLOYS OF METAL-METALOID Gulivets A.N., Baskevich A.S. Abstract Amorphous metal alloys metal-metalloid possess a complex of unique physical-chemical properties and are a new cla...

Моделирование кинетики образования интерметаллидных сплавов в условиях самораспространяющегося высокотемпературного синтеза

THE MODELING OF THE KINETICS FORMATION OF INTERMETALLIC ALLOYS UNDER SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS Sereda B.P., Kruglyak I.V., Belokon Y.A., Belokon K.V., Zherebtsov A.A. Abstract When evaluating the possi...

Дослідження напруженого стану конвеєрної стрічки з тросами різної жорсткості

RESEARCH OF THE TENSE STATE OF CONVEYER RIBBON IS WITH THE ROPES OF DIFFERENT INFLEXIBILITY Belmas I,V., Bilous O.I., Kolosov D.L., Vorobjova О.М Abstract Conveyor belts are used in a variety of conveyor systems, convex...

МАТЕМАТИЧНА МОДЕЛЬ ПРОЦЕСУ МИЙКИ ШЛІФУВАЛЬНОГО ШЛАМУ

TTHE MATHEMATICAL MODEL OF THE CLEANING OF GRINDING SLUDGE PROCESS Vernyhora V.D. Abstract Continuing pollution of the natural environment with solid, liquid and gaseous wastes of production and consumption, causing env...

Методика оцінки фінансового стану підприємства з використанням левериджу

METHOD OF ASSESSING THE FINANCIAL CONDITION OF AN ENTERPRISE USING LEVERAGE Levchuk K.O., Romaniuk R.Ya. Abstract In the modern economy, the role of innovation is great. They provide the competitiveness of products and...

Download PDF file
  • EP ID EP277250
  • DOI -
  • Views 74
  • Downloads 0

How To Cite

Н. Б. Клочко, С. А. Чеховський, М. О. Слабінога (2016). Дослідження фізичної моделі процесу вимірювання об’єму газу турбінними лічильниками методом Монте-Карло. Математичне моделювання, 1(2), 77-79. https://europub.co.uk/articles/-A-277250