Дослідження розподілу випадкових хорд у сфері

Journal Title: Математичне моделювання - Year 2018, Vol 1, Issue 2

Abstract

STUDY OF THE DISTRIBUTION OF RANDOM CHORDS IN THE SPHERE Stroieva V.O, Avramenko V.I. Abstract In this paper we consider the problem of determining the length of a random chord, which is often associated with problems such as paradoxes. It is concluded that the use of three-dimensional models allows us to consider cases when uncertainty disappears when solving problems. It was investigated the distribution of random chords in a sphere by the example of rays from sources, whose positions may be different in relation to the sphere.If the source is sufficiently far from the middle of the sphere, then the rays can be considered parallel, and it turns out that the density distribution of the length of random chords is linear and expressed by the formula f(l)=l/(2r^2 ) 0<l<2r,where r is the radius of the sphere. For other provisions of the source relative to the sphere, the model of the uniform distribution in the distribution space is considered. It is assumed that this is a distribution, when the probability of attack on the surface element of the sphere of an arbitrary radius R with the center at the point of the source of the rays is constant To simulate such a distribution, an even distribution of each coordinate in the interval (-R, R) is used, using the condition that the distance from the point from the source does not exceed R.In this case, all three directions of the cosine of the rays are uniformly distributed, which ensures the same probability of impact on the element of the surface of the sphere.Separately obtained distribution laws for the position of the source both outside the scope and in the middle of the volume.In particular, in the position of the source on the surface of the sphere, the distribution of the lengths of random chords is uniform with the density of distribution f(l)= 0,5r 0 <l < 2r. Analyzing the influence of several random sources, it has been shown that mathematically it is described by the same dependencies as for one remote source. If the distribution of rays from a source is determined by a law that is not homogeneous, the distribution of the length of random chords in the sphere can be estimated by both analytical and statistical methods. References [1] Avramenko V.I. Probability Theoryand Mathematical Statistics: Teaching. manual. / V.I. Avramenko, I.K. Karimov – 2 ndform., рrocessing. and complemented – Dniprodzerzhinsk: DSTU, 2013. – 254 р. [2] Vukolov E.A. Collection of Math Problems for vtusov. Special courses. / E.A. Vukolov, A.V Efimov, V.N. Zemskov and others. Ed. A.VEfimova– М., 1984. – 607 р. [3] Mosteller F. Fifty entertaining probabilistic problems with solutions. / F. Mosteller. – M.: Nauka, 1975. – 112 p. [4] Sekey G. Paradoxes in probability theory and mathematical statistics. / G. Sekey. Per. from english–M.: Mir, 1990. – 240 p. [5] Stroieva V.O., Avramenko V. I. Investigation of the distribution of the length of the chord in the circle. / V.O. Stroeva, V.I. Avramenko // Questions of Applied Mathematics and Mathematical Modeling: a collection of scientific works. – D.: DNU, 2015. – W. 15, p. 181–190.

Authors and Affiliations

В. О. Строєва, В. І. Авраменко

Keywords

Related Articles

Mathematical modeling of gyroscope dynamicsbased on quaternion

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ДИНАМІКИ ГІРОСКОПУ НА ОСНОВІ КВАТЕРНІОНА Красніков К.С. Реферат Автор статті розглядає проблему виродження кутів сферичної системи координат, що спричиняє нереалістичну поведінку дроту у металур...

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ СТУПЕНІ ЗНОСУ ПОВЕРХНЕВОГО ШАРУ ДЕТАЛЕЙ В ЗАЛЕЖНОСТІ ВІД РЕЖИМІВ НАВАНТАЖЕННЯ

MATHEMATICAL MODELING OF STEPS OF THE SURFACE LOAD OF DETAILS IN DEPENDENCE FROM LOAD MODES Chernet O.G., Sukhomlin V.I., Voloshchuk R.G. Abstract Methods of obtaining wear-resistant coatings are considered in this wor...

Построение асимптотически оптимального алгоритма расчетов эквидистантных ломаных

CONSTRUCTION ASYMPTOTICALLY OPTIMUM ALGORITHM OF CALCULATIONS EQUIDISTANT POLYLINES Korotkov V.S. Abstract In practice, when manufacturing high-precision products containing surfaces of complex spatial shape, it become...

Про обчислення складності завдань

ABOUT COMPATIBILITY OF TASKS COMPATIBILITY Shumeyko O.O., Iskandarova-Mala A.O., Lymar N.M. Abstract Student knowledge and skills control is one of the main elements of the learning process. The effectiveness of managi...

Моделирование ближнего порядка аморфных сплавов металл-металлоид

MODELING OF THE SHORT–RANGE ORDER AMORPHY ALLOYS OF METAL-METALOID Gulivets A.N., Baskevich A.S. Abstract Amorphous metal alloys metal-metalloid possess a complex of unique physical-chemical properties and are a new cla...

Download PDF file
  • EP ID EP444492
  • DOI 10.31319/2519-8106.2(39)2018.154201
  • Views 99
  • Downloads 0

How To Cite

В. О. Строєва, В. І. Авраменко (2018). Дослідження розподілу випадкових хорд у сфері. Математичне моделювання, 1(2), 30-36. https://europub.co.uk/articles/-A-444492