Электродинамическое моделирование фазированных антенных решеток с согласующей периодической структурой и диэлектрическим заполнением

Journal Title: Математичне моделювання - Year 2016, Vol 1, Issue 2

Abstract

ELECTROMAGNETICS MODELLING OF WAVEGUIDE PHASED ANTENNA ARRAY WITH MATCHING PERIODICAL STRUCURE AND DIELECTRICAL LAYERS Marchenko S.V., Gnatyuk M.O, Syanov O.M. Abstract Matching of phased array with free space is an important task. There are various methods to improve matching: the use of inductive irises[5], flanges impedance [5] and magnetodielectric inserts and layers [8] etc. This paper investiges the application of the matching structure (MS) in the form of matching periodical structure (MPS) with dielectric layers, as well as the result of the influence of the dielectric filling on the reflection coefficient. The results of the comparison between MPS and MPS with dielectric layers were done. Electromagnetics modelling of PAA with presented MS was carried out with penetrating area method (PAM). The PAM is a one of methods created on basic of the integral equation method [8]. Accounting of allocated partial and penetrating areas with magnetic-dielectrical including is actual and connect with Green’s function formulating of stratified magnetic-dielectrical including. In spite of existing approaches, account of magnetic-dielectrical including in PAM has own features that described in this paper. Numerical study of matching of phased antenna array with free space by means of MPS showed that using of PMS with increasing thickness of the waveguide becomes more noticeable. The use of dielectric inclusions in the PMs are useful within the structure, because covers do not contribute to the reduction of reflectance due to the appearance of a surface wave propagating in the dielectric layer. The average decrease in the modulus of the reflection coefficient using PMS with dielectric inclusions in comparison without the filling is 25-35%.. References [1] Kaliberda М. Е. Metod singulyaryh integralnyh uravnenii v zadache difrakscii voln tipa H0m- и E0m - na sisteme axial’nyh neodnorodnostei v koaxial’nom volnovode/ М. Е. Kaliberda, S. A. Pogarskii, V. Е. Kuz’menko// Radiotekhknika. Vseykr. mezhved. nauch.-tekhn. sb. – Kh.: KhNURE, 2010. – Vyp. 160. – S. 286–291. [2] Mladenov P. L. Difraksciya voln na dvukh periodocheskih reshetkah iz nepreryvnyh krivolineinyh metallicheskih lent, raspolozhenyh s dvyh storon сторон dielektricheskogo sloya // P. L. Mladenov, S.L. Prosvirnin//Radiofizika i radioastronomiya , 2010. – tom № 2. – S. 171-182. [3] Lytvynenko L. M. Wave Diffraction by Periodic Multilayer Structures /L. M. Lytvynenko and S. L. Prosvirnin. – Cambridge Scientific Publishers, 2012. – 158 p. [4] Iliinskii А. S. Obosnovanie proekcshionogo metoda chislenjgj resheniya zadachi о vozbuzgdenii ploskoi periodicheskoi struktury polubeskonechnyh volnovodov / А. S. Iliinskii, О. А. Lebedeva // Vychisl. metody i programirovanie. – М.: МGU, 1976. – Т.32 – S. 130 – 142. [5] Amitey N.. The theory and analysis of phased array antennas/ N. Amitey., V. Galindo, Wu C/ English translation Ed. G. Т. Маrkоv and A.P. Chаplin. – М.: Мir, 1974. - 455 p. [6] Prokhoda I. G. Primenenie metoda chastichnykh peresekayushichsya oblastei dlya rasheta volnovodnykh FAR s aperturturnymi neodnorodnostyami / И. Г. Prokhoda, V.M. Мorozov // Electrodynamika i physika SVCH. - Dnepropetrovsk: DGU, 1980. – s. 106–112. [7] Маgro V. I. Issledovanie soglaqsuyushchego ustrojstva dlya konechnyh lineinyh volnovodnyh FAR/ V.I. Маgro, V.M. Мorozov // Izv. vuzov. Radioelectronica. – 1997. – №7. – C. 30 – 34. [8] Marchenko S. V. Application of penetrating area method to calculate waveguide phased antennas array with magnetic-dielectrical materials/ S.V Marchenko, V.M. Мorozov // Proc. 8th International Conference on Antenna Theory and Techniques (ICATT '11). – Kyiv: 2011. – P.275–277.

Authors and Affiliations

С. В. Марченко, А. М. Съянов, М. А. Гнатюк

Keywords

Related Articles

Моделирование кинетики образования интерметаллидных сплавов в условиях самораспространяющегося высокотемпературного синтеза

THE MODELING OF THE KINETICS FORMATION OF INTERMETALLIC ALLOYS UNDER SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS Sereda B.P., Kruglyak I.V., Belokon Y.A., Belokon K.V., Zherebtsov A.A. Abstract When evaluating the possi...

Розробка математичної моделі очистки фенольних стічних вод від смолистих речовин. Частина 2

REMOVAL OF RESINOUS SUBSTANCES FROM PHENOLIC WASTEWATER: DEVELOPMENT OF A MATHEMATICAL MODEL. PART 2 Trikilo A.I., Yelatontsev D.O. Abstract The article represents the cluster analysis of experimental data, which were o...

Модель динаміки нагрівання металу в полуменевих печах камерного типу

A MODEL OF DYNAMICS FOR HEAT OF METAL IN THE FLAMING FURNACES OF CHAMBER TYPE Revun M.P., Zinchenko V.Yu., Ivanov V.І., Mosejko Yu.V. Abstract The task of control by heat work for flaming furnaces of chamber type support...

Математическая модель тепло- и массопереноса в первом периоде сушки плоского слоя дисперсного материала

The analytical method for calculating the temperature field and the kinetics of evaporation of moisture during drying heat "massive" flat layer of moist particulate material.

Построение подсистемы АСУ "Страж" по обнаружению эволюционирующих пустот в условиях карьера

BUILDING AUTOMATION SUBSYSTEM "GUARDIAN" TO DETECT EVOLVING VOIDS IN A CAREER Smolyan P.S., Kozikova T.C. Abstract Search void of technogenic and natural character is an urgent task of geophysics. Linked to this is an i...

Download PDF file
  • EP ID EP277271
  • DOI -
  • Views 61
  • Downloads 0

How To Cite

С. В. Марченко, А. М. Съянов, М. А. Гнатюк (2016). Электродинамическое моделирование фазированных антенных решеток с согласующей периодической структурой и диэлектрическим заполнением. Математичне моделювання, 1(2), 108-111. https://europub.co.uk/articles/-A-277271