Розробка математичної моделі очистки фенольних стічних вод від смолистих речовин. Частина 2

Journal Title: Математичне моделювання - Year 2016, Vol 1, Issue 2

Abstract

REMOVAL OF RESINOUS SUBSTANCES FROM PHENOLIC WASTEWATER: DEVELOPMENT OF A MATHEMATICAL MODEL. PART 2 Trikilo A.I., Yelatontsev D.O. Abstract The article represents the cluster analysis of experimental data, which were obtained during the previous researches. It indicates that within the multitude of experiments, two clusters can be differentiated. The first cluster complies with the non-optimal reagents dosages ratio, thus the treatment efficiency is low. Contrariwise, the second one corresponds to optimal ratio of reagents, and provides, thus, high degree of removal of resinous substances. For each of clusters the mathematical models, which indicate the influence of inlet parameters on treatment efficiency, were created. Essential parameters of first cluster are next: dosage of bentonite clay and initial concentration of resinous substances; and of second one: pH value of phenolic wastewater and initial concentration of resinous substances. The values of average relative error and standard deviation for both models are acceptable for chemical technology. Basing on BET theory of polymolecular adsorption, we calculated the maximum adsorption value of resinous substances on sodium bentonite – 0,0057 mol/g and adsorption constant – 1,0059. Afterwards we estimated the specific surface area of sodium bentonite – 2918 m2/g. Basing on Vant-Goff equation and the classical definition of the Gibb’s energy, we computed the thermodynamic parameters for the adsorption of resinous substances on sodium bentonite: Gibb’s energy ΔG = -15,79 J/mol; enthalpy ΔН = -4,99 J/mol; average entropy (in temperature range 318-328 K) ΔS ≈ 33 mJ/mol∙K. The negative value of ΔH shows that adsorption is exothermic. In general, adsorption mechanism is physical (physisorption), because in physisorption, ΔH is lower than 40 J/mol. The data obtained suggest that resinous substances is adsorbed via a physisorption mechanism generally with Van-Der-Vaal’s forces and partially by electrostatic interaction. In addition, the negative value of ΔG signifies that adsorption is spontaneous. Thus, the profound studies of treatment regularities shown above, confirm our previous recommendations in case of effective removal of resinous substances from phenolic wastewater by using sodium bentonite clay with the addition of the cationic flocculant CW 3279. References [1] Trikilo, A.I., & Yelatontsev, D.O. (2016). Rozrobka matematichnoyi modeli ochistki fenolnih stichnih vod vid smolistih rechovin. Chastina 1. Matematichne modelyuvannya – Mathematical modeling, no. 1(34), pp. 38–42. (in Ukrainian). [2] Zapolskiy, A.K. (2011). Ochistka vodyi koagulirovaniem: monografiya. Kamenets-Podolskiy: ChP «Medoboryi-2006» (in Russian). [3] Rouquerol, F. (2014). Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. San Diego: Academic Press (in English). [4] Karnauhov, A.P. (1999). Adsorbtsiya. Tekstura dispersnyih i poristyih materialov. Novosibirsk: Nauka (in Russian). [5] Makarevich, N.A. (2015). Teoreticheskie osnovyi adsorbtsii: uchebnoe posobie. Arhangelsk: SAFU (in Russian). [6] Kostrzhitskiy, A.I. (2008). Fizichna ta koloyidna himiya. Navch. pos. Kyiv: Tsentr uchbovoyi literaturi (in Ukrainian). [7] Ivanchenko, A.V., & Yelatontsev, D.O. (2016). Determination of the adsorbent specific surface area at tar removing from industrial wastewater of ammonium sulphate production. Odes’kyi Politechnichnyi Universytet. Pratsi – Proceedings of the Odessa Polytechnic University, no. 3(50), pp. 100–110. (in Ukrainian). [8] Kirovskaya, I.A. (1995). Adsorbtsionnyie protsessyi. Irkutsk: Izd-vo Irkut. un-ta (in Russian).

Authors and Affiliations

А. І. Трикіло, Д. О. Єлатонцев

Keywords

Related Articles

Математическая модель срока службы роторных питателей транспортно-загрузочной системы

A mathematical model of working rotating conical surface tribosystem after wear. The parameters influencing the formation of the relief of the rotor wear. The mathematical models to determine the characteristics curves o...

Математическая модель системы автоматического управления температурным режимом электрической нагревательной печи

MATHEMATICAL MODEL OF AUTOMATIC CONTROL SYSTEM OF THE TEMPERATURE REGIME OF THE ELECTRIC HEATING AGGREGATE. Zvorykin V.B., Mikhalyov A.I., Stanchits G.Y. Abstract The authors gave the main attention to the automation of...

Математическая модель парового тракта многотопливного котлоагрегата для утилизации метана угольной шахты

MATHEMATICAL MODEL OF A STEAM TRACT OF A MULTI-FUEL BOILER UNIT FOR THE DISPOSAL OF COAL MINT METHANE. Stasevich R.K. Abstract Thanks to the creative efforts of the students and workers of IGTM NAS of Ukraine, we take t...

Обчислення вірогідності визначення дефектів деталей методами неруйнівного контролю

CALCULATION OF VIRGINITY OF DETERMINATION OF DEFECTS OF DETAILS BY NON-GOVERNMENTAL CONTROL METHODS Shmatko D.Z, Kochneva E.V. Abstract Non-destructive methods of control or defectoscopy are a generic name for methods o...

Розробка математичної моделі очистки фенольних стічних вод від смолистих речовин. Частина 2

REMOVAL OF RESINOUS SUBSTANCES FROM PHENOLIC WASTEWATER: DEVELOPMENT OF A MATHEMATICAL MODEL. PART 2 Trikilo A.I., Yelatontsev D.O. Abstract The article represents the cluster analysis of experimental data, which were o...

Download PDF file
  • EP ID EP277225
  • DOI -
  • Views 68
  • Downloads 0

How To Cite

А. І. Трикіло, Д. О. Єлатонцев (2016). Розробка математичної моделі очистки фенольних стічних вод від смолистих речовин. Частина 2. Математичне моделювання, 1(2), 31-34. https://europub.co.uk/articles/-A-277225