Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil

Journal Title: Journal of Agricultural Machinery - Year 2018, Vol 8, Issue 1

Abstract

Introduction The extensive use of diesel engines in agricultural activities and transportation, led to the emergence of serious challenges in providing and evaluating alternative fuels from different sources in addition to the chemical properties close to diesel fuel, including properties such as renewable, inexpensive and have fewer emissions. Biodiesel is one of the alternative fuels. Many studies have been carried out on the use of biodiesel in pure form or blended with diesel fuel about combustion, performance and emission parameters of engines. One of the parameters that have been less discussed is energy balance. In providing alternative fuels, biodiesel from waste cooking oil due to its low cost compared with biodiesel from plant oils, is the promising option. The properties of biodiesel and diesel fuels, in general, show many similarities, and therefore, biodiesel is rated as a realistic fuel as an alternative to diesel. The conversion of waste cooking oil into methyl esters through the transesterification process approximately reduces the molecular weight to one-third, reduces the viscosity by about one-seventh, reduces the flash point slightly and increases the volatility marginally, and reduces pour point considerably (Demirbas, 2009). In this study, effect of different percentages of biodiesel from waste cooking oil were investigated. Energy distribution study identify the energy losses ways in order to find the reduction solutions of them. Materials and Methods Renewable fuel used in this study consists of biodiesel produced from waste cooking oil by transesterification process (Table 1). Five diesel-biodiesel fuel blends with values of 0, 12, 22, 32 and 42 percent of biodiesel that are signs for B0, B12, B22, B32 and B42, respectively. The test engine was a diesel engine, single-cylinder, four-stroke, compression ignition and air‌cooled, series 3LD510 in the laboratory of renewable energies of agricultural faculty, Tarbiat Modarres University. The engine is connected to a dynamometer and after reaching steady state conditions data were obtained (Fig. 1). In thermal balance study, combustion process merely as a process intended to free up energy fuel and the first law of thermodynamics is used (Koochak et al., 2000). The energy contained in fuel converted to useful and losses energies by combustion. Useful energy measured by dynamometer as brake power and losses energy including exhaust emission, cooling system losses and uncontrollable energy losses. Variance analysis of all engine energy balance done by split plot design based on a completely randomized design and the means were compared with each other using Duncan test at 5% probability. Results and Discussion Results showed that, in general, biodiesel use has a significant impact on all components of energy balance. Of total energy from fuel combustion, the share of energy losses to form of exhaust emissions the maximum value in all percentages allocated to biodiesel (Average 51.715 percent) with the maximum and minimum amount of B42 (55.982 percent) and B0 (46.481 percent), respectively (Fig. 2). Also, fuel blend with 12% biodiesel was diagnosed the best blend because of having the most useful power, having the lowest energy losses through the exhaust and cooling system. Conclusion Using biodiesel produced from waste cooking oil by transesterification process, lead to increase the useful power. The addition of biodiesel to pure diesel cause to significant reduction in the waste energy due to friction. In higher amounts of biodiesel increase energy losses especially through the exhaust and cooling system due to higher viscosity.

Authors and Affiliations

S. Abbasi,H. Bahrami,B. Ghobadian,M. Kiani Deh Kiani,

Keywords

Related Articles

Design and Construction of a Cabinet Dryer for Food Waste and Evaluation of its Kinetics and Energy Consumption

IntroductionProviding new solutions to control wet waste is one of the most important issues in maintaining public health. Drying will reduce the harmful effects on the environment by reducing moisture and the smell of w...

Semi-mechanized Harvesting of the Safflower Petals in Comparison with Conventional Method

IntroductionSafflower (Carthamus tinctorius L.) is an oil plant with a growth cycle of 120 days. The seeds of this crop are primarily used for oil production, while its flower petals are used for extracting natural pigme...

Construction of an experimental plot seeder of wheat planting and compare it by imported one

IntroductionResearchers frequently include multiple cultivars and fertility levels in field experiments. Therefore, the experiments sowing operation must represent a considerable saving in time and labor, compared to han...

Ergonomic evaluation of tea farmers in north of Iran during plucking using body modeling

Introduction People in different jobs may face skeletal problems in their body due to poor physical conditions as a result of poor working conditions and inappropriate equipment. Harvesting tea is one of those jobs that...

Development and Optimization a Threshing Unit for Sunflower Grain with Response Surface Methodology (RSM)

IntroductionThe nut sunflower is usually cultivated in small farms and is harvested with a low capacity of harvester at high moisture content. For the rigid threshing components, impact and knead force are so large as it...

Download PDF file
  • EP ID EP717875
  • DOI -
  • Views 36
  • Downloads 0

How To Cite

S. Abbasi, H. Bahrami, B. Ghobadian, M. Kiani Deh Kiani, (2018). Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil. Journal of Agricultural Machinery, 8(1), -. https://europub.co.uk/articles/-A-717875