Enhanced Detection of COVID-19 in Chest X-ray Images: A Comparative Analysis of CNNs and the DL+ Ensemble Technique
Journal Title: Information Dynamics and Applications - Year 2023, Vol 2, Issue 4
Abstract
The swift global spread of Corona Virus Disease 2019 (COVID-19), identified merely four months prior, necessitates rapid and precise diagnostic methods. Currently, the diagnosis largely depends on computed tomography (CT) image interpretation by medical professionals, a process susceptible to human error. This research delves into the utility of Convolutional Neural Networks (CNNs) in automating the classification of COVID-19 from medical images. An exhaustive evaluation and comparison of prominent CNN architectures, namely Visual Geometry Group (VGG), Residual Network (ResNet), MobileNet, Inception, and Xception, are conducted. Furthermore, the study investigates ensemble approaches to harness the combined strengths of these models. Findings demonstrate the distinct advantage of ensemble models, with the novel deep learning (DL)+ ensemble technique notably surpassing the accuracy, precision, recall, and F-score of individual CNNs, achieving an exceptional rate of 99.5%. This remarkable performance accentuates the transformative potential of CNNs in COVID-19 diagnostics. The significance of this advancement lies not only in its reliability and automated nature, surpassing traditional, subjective human interpretation but also in its contribution to accelerating the diagnostic process. This acceleration is pivotal for the effective implementation of containment and mitigation strategies against the pandemic. The abstract delineates the methodological choices, highlights the unparalleled efficacy of the DL+ ensemble technique, and underscores the far-reaching implications of employing CNNs for COVID-19 detection.
Authors and Affiliations
Bwanali Haji Ntaibu Jereni, Iota Sundire
Enhanced Channel Estimation in Multiple-Input Multiple-Output Systems: A Dual Quadratic Decomposition Algorithm Approach for Interference Cancellation
In Multiple-Input Multiple-Output (MIMO) systems, a considerable number of antennas are deployed at each base station, utilizing Time-shifted pilot contamination strategies. It was observed that Time-shifted pilot contam...
Enhanced Method for Monitoring Internet Abnormal Traffic Based on the Improved BiLSTM Network Algorithm
The complexity and variability of Internet traffic data present significant challenges in feature extraction and selection, often resulting in ineffective abnormal traffic monitoring. To address these challenges, an impr...
Enhancing Pneumonia Diagnosis with Transfer Learning: A Deep Learning Approach
The significant impact of pneumonia on public health, particularly among vulnerable populations, underscores the critical need for early detection and treatment. This research leverages the National Institutes of Health...
Crowd Density Estimation via a VGG-16-Based CSRNet Model
Accurate crowd density estimation has become critical in applications ranging from intelligent urban planning and public safety monitoring to marketing analytics and emergency response. In recent developments, various me...
Bridging Fundamental Physics and Practical Applications: Advances in Quantum-Enhanced Sensing
Quantum-enhanced sensing has emerged as a transformative technology with the potential to surpass classical sensing modalities in precision and sensitivity. This study explores the advancements and applications of quan...