Enhancing Pneumonia Diagnosis with Transfer Learning: A Deep Learning Approach

Journal Title: Information Dynamics and Applications - Year 2024, Vol 3, Issue 2

Abstract

The significant impact of pneumonia on public health, particularly among vulnerable populations, underscores the critical need for early detection and treatment. This research leverages the National Institutes of Health (NIH) chest X-ray dataset, employing a comprehensive exploratory data analysis (EDA) to examine patient demographics, X-ray perspectives, and pixel-level evaluations. A pre-trained Visual Geometry Group (VGG) 16 model is integrated into the proposed architecture, emphasizing the synergy between robust machine learning techniques and EDA insights to enhance diagnostic accuracy. Rigorous data preparation methods are utilized to ensure dataset reliability, addressing missing data and sanitizing demographic information. The study not only provides valuable insights into pneumonia-related trends but also establishes a foundation for future advancements in medical diagnostics. Detailed results are presented, including disease distribution, model performance metrics, and clinical implications, highlighting the potential of machine learning models to support accurate and timely clinical decision-making. This integration of advanced technologies into traditional healthcare practices is expected to improve patient outcomes. Future directions include enhancing model sensitivity, incorporating diverse datasets, and collaborating with medical professionals to validate and implement the system in clinical settings. These efforts are anticipated to revolutionize pneumonia diagnosis and broader medical diagnostics. This work offers comprehensive code for developing and optimizing deep learning (DL) models for medical image classification, focusing on pneumonia detection in X-ray images. The code outlines the construction of the model using pre-trained architectures such as VGG16, detailing essential preparation steps including image augmentation and metadata parsing. Tools for data separation, generator creation, and callback training for monitoring are provided. Additionally, the code facilitates performance assessment through various metrics, including the receiver operating characteristic (ROC) curve and F1-score. By providing a systematic framework, this research aims to accelerate the development process for researchers in medical image processing and expedite the creation of accurate diagnostic tools.

Authors and Affiliations

Rashmi Ashtagi, Nitin Khanapurkar, Abhijeet R. Patil, Vinaya Sarmalkar, Balaji Chaugule, H. M. Naveen

Keywords

Related Articles

Routing Attack Detection Using Ensemble Deep Learning Model for IIoT

Smart cities, ITS, supply chains, and smart industries may all be developed with minimal human interaction thanks to the increasing prevalence of automation enabled by machine-type communication (MTC). Yet, MTC has subst...

Enhancing 5G LTE Communications: A Novel LDPC Decoder for Next-Generation Systems

The advent of fifth-generation (5G) long-term evolution (LTE) technology represents a critical leap forward in telecommunications, enabling unprecedented high-speed data transfer essential for today’s digital society. De...

Advancements in Cow Health Monitoring: A Systematic Literature Review of IoT Applications

The landscape of livestock farming is undergoing a significant transformation, primarily influenced by the integration of the Internet of Things (IoT) technology. This systematic literature review (SLR) critically examin...

A Scalable Framework to Analyze Data from Heterogeneous Sources at Different Levels of Granularity

There is an enormous amount of data present in many different formats, including databases (MsSql, MySQL, etc.), data repositories (.txt, html, pdf, etc.), and MongoDB (NoSQL, etc.). The processing, storing, and manageme...

Enhanced Channel Estimation in Multiple-Input Multiple-Output Systems: A Dual Quadratic Decomposition Algorithm Approach for Interference Cancellation

In Multiple-Input Multiple-Output (MIMO) systems, a considerable number of antennas are deployed at each base station, utilizing Time-shifted pilot contamination strategies. It was observed that Time-shifted pilot contam...

Download PDF file
  • EP ID EP744289
  • DOI https://doi.org/10.56578/ida030203
  • Views 22
  • Downloads 0

How To Cite

Rashmi Ashtagi, Nitin Khanapurkar, Abhijeet R. Patil, Vinaya Sarmalkar, Balaji Chaugule, H. M. Naveen (2024). Enhancing Pneumonia Diagnosis with Transfer Learning: A Deep Learning Approach. Information Dynamics and Applications, 3(2), -. https://europub.co.uk/articles/-A-744289