Estimation of pyrolysis product of LDPE degradation using different process parameters in a stirred reactor
Journal Title: Polyolefins Journal - Year 2015, Vol 2, Issue 1
Abstract
Pyrolysis of low density polyethylene (LDPE) by equilibrium fluid catalytic cracking (FCC) was studied in a stirred reactor under different process parameters. In this work, the effect of process parameters such as degradation temperature (420-510°C), catalyst/polymer ratio (0-60%), carrier gas type (H2, N2, ethylene, propylene, Ar and He), residence time and agitator speed (0-300 rpm) on the condensate yield (liquid, gas and coke) and product composition were considered. Reaction products were determined by GC analysis and shown to contain naphthenes (cycloalkanes), paraffins (alkanes), olefins (alkenes) and aromatics. Higher temperature and more catalyst amount enhanced LDPE cracking. The maximum “fuel like” condensed product yield was attained at 450°C and 10% catalyst, respectively and gaseous products increased with increases in temperature. Hydrogen as a reactive carrier gas increased the condensed and paraffinic product yield. Appropriate heat transfer (by stirring) increased the catalyst efficiency in a stirred reactor.
Authors and Affiliations
Mehrdad Seifali Abbas-Abadi, Mehdi Nekoomanesh, Armando G. McDonald, Hamid Yeganeh
An investigation on non-isothermal crystallization behavior and morphology of polyamide 6/ poly(ethylene-co-1-butene)-graft-maleic anhydride/organoclay nanocomposites
Nanocomposites based on polyamide 6 (PA6) and poly(ethylene-co-1-butene)-graft-maleic anhydride (EB-g- MAH) blends have been prepared via melt mixing. The effect of blend ratio and organoclay concentration on the crystal...
Role of covalent bond formation in morphology and properties of PP/PP-g-PS binary blends
PP-g-PS copolymer is a typical compatilizer used in polypropylene and polystyrene immiscible blends. PP-g-PS copolymers with different side chain lengths were synthesized, and their thermal and mechanical properties were...
Evaluation of continuous and discrete melting endotherms in determination of structural heterogeneities in Ziegler-Natta catalyzed linear low density polyethylene
Ethylene / 1-butene copolymers at different comonomer levels were synthesized using Ziegler-Natta catalyst to evaluate the applicability of thermal fractionation methods in predicting chemical composition distribution (C...
Introduction of titanium species into fluorine-modified SiO2- supported Cr-V bimetallic catalyst for ethylene polymerization and ethylene/1-hexene copolymerization
Chromium-vanadium (Cr-V) bimetallic catalysts are prepared by the introduction of vanadium into the Phillips catalyst which is one of the most significant industrial ethylene polymerization catalysts for tuning the Phill...
Kinetics of ethylene polymerization over titanium-magnesium catalysts: The reasons for the observed second order of polymerization rate with respect to ethylene
The data on the effect of ethylene concentration on polymerization rate for several modifications of modern highly active titanium–magnesium catalysts TiCl4/MgCl2 are presented. These catalysts differ in titanium content...