Fabric Defect Detection and Classifier via Multi-Scale Dictionary Learning and an Adaptive Differential Evolution Optimized Regularization Extreme Learning Machine

Journal Title: Fibres and Textiles in Eastern Europe - Year 2019, Vol 27, Issue 1

Abstract

To develop an automatic detection and classifier model for fabric defects, a novel detection and classifier technique based on multi-scale dictionary learning and the adaptive differential evolution algorithm optimised regularisation extreme learning machine (ADE-RELM) is proposed. Firstly in order to speed up dictionary updating under the condition of guaranteeing dictionary sparseness, k-means singular value decomposition (KSVD) dictionary learning is used. Then multi-scale KSVD dictionary learning is presented to extract texture features of textile images more accurately. Finally a unique ADE-RELM is designed to build a defect classifier model. In the training ADE-RELM classifier stage, a self-adaptive mutation operator is used to solve the parameter setting problem of the original differential evolution algorithm, then the adaptive differential evolution algorithm is utilised to calculate the optimal input weights and hidden bias of RELM. The method proposed is committed to detecting common defects like broken warp, broken weft, oil, and the declining warp of grey-level and pure colour fabrics. Experimental results show that compared with the traditional Gabor filter method, morphological operation and local binary pattern, the method proposed in this paper can locate defects precisely and achieve high detection efficiency.<br/><br/>

Authors and Affiliations

Zhiyu Zhou, Chao Wang, Xu Gao, Zefei Zhu, Xudong Hu, Xiao Zheng, Likai Jiang

Keywords

Related Articles

Hydrostatic Resistance and Mechanical Behaviours of Breathable Layered Waterproof Fabrics

Breathable layered waterproof fabrics have good applications in the fields of sportswear, protective clothing and construction industries. The properties of these fabrics in allowing water vapour to pass through while pr...

Hybrydowe, kompozytowe układy balistyczne z zaawansowaną ceramiką i włóknami UHMWPE

Celem badań było opracowanie nowej koncepcji hybrydowych, kompozytowych układów balistycznych na bazie ceramiki oraz kompozytów włóknistych. W zależności od wymagań ochrony balistycznej, układy balistyczne projektowano w...

Chinese Textile Industry: Sustainable Development Challenges and Competitiveness issues in Economic Environment Dynamics

Contemporary geo-economic development is characterised by global transformation from the EU and Western countries, in general, towards the Asia-Pacific and East Asian concept, which will result in further evolution of th...

Wpływ naturalnie modyfikowanej skrobi i syntetycznej preparacji na charakterystyki przędz preparowanych

Celem pracy było zbadanie zmian właściwości przędz preparowanych preparacjami syntetycznymi i z naturalnie modyfikowanej skrobi. Proces nanoszenia preparacji przeprowadzono przy zachowaniu stałych warunków nowo zbudowane...

Toxic Heavy Metal Ions and Metal-Complex Dyes Removal from Aqueous Solutions Using an Ion Exchanger and Titanium Dioxide

The aim of the study was to compare the removal efficiency of toxic heavy metal ions: chromium(VI), nickel(II) and copper(II) as well as metal-complex dyes from aqueous solution using Lewatite VPOC 1065 and AdsorbsiaTM A...

Download PDF file
  • EP ID EP413796
  • DOI 10.5604/01.3001.0012.7510
  • Views 76
  • Downloads 0

How To Cite

Zhiyu Zhou, Chao Wang, Xu Gao, Zefei Zhu, Xudong Hu, Xiao Zheng, Likai Jiang (2019). Fabric Defect Detection and Classifier via Multi-Scale Dictionary Learning and an Adaptive Differential Evolution Optimized Regularization Extreme Learning Machine. Fibres and Textiles in Eastern Europe, 27(1), 67-77. https://europub.co.uk/articles/-A-413796