Fabric Defect Detection and Classifier via Multi-Scale Dictionary Learning and an Adaptive Differential Evolution Optimized Regularization Extreme Learning Machine

Journal Title: Fibres and Textiles in Eastern Europe - Year 2019, Vol 27, Issue 1

Abstract

To develop an automatic detection and classifier model for fabric defects, a novel detection and classifier technique based on multi-scale dictionary learning and the adaptive differential evolution algorithm optimised regularisation extreme learning machine (ADE-RELM) is proposed. Firstly in order to speed up dictionary updating under the condition of guaranteeing dictionary sparseness, k-means singular value decomposition (KSVD) dictionary learning is used. Then multi-scale KSVD dictionary learning is presented to extract texture features of textile images more accurately. Finally a unique ADE-RELM is designed to build a defect classifier model. In the training ADE-RELM classifier stage, a self-adaptive mutation operator is used to solve the parameter setting problem of the original differential evolution algorithm, then the adaptive differential evolution algorithm is utilised to calculate the optimal input weights and hidden bias of RELM. The method proposed is committed to detecting common defects like broken warp, broken weft, oil, and the declining warp of grey-level and pure colour fabrics. Experimental results show that compared with the traditional Gabor filter method, morphological operation and local binary pattern, the method proposed in this paper can locate defects precisely and achieve high detection efficiency.<br/><br/>

Authors and Affiliations

Zhiyu Zhou, Chao Wang, Xu Gao, Zefei Zhu, Xudong Hu, Xiao Zheng, Likai Jiang

Keywords

Related Articles

Linear Programming for Aggregate Production Planning in a Textile Company

This article aims to propose and implement an aggregated production planning model to provide optimal strategies in the medium term for a textile company, for which a linear programming model is proposed to minimise tota...

Effect of Weave Structures and Zinc Oxide Nanoparticles on the Ultraviolet Protection of Cotton Fabrics

The protection provided by clothing against ultraviolet (UV) radiation has been the subject of considerable recent research. However, there is a lack of information concerned with the effect of weave structures and zinc...

Środek biobójczy do modyfikacji wysoko skutecznych włóknin filtracyjnych z polimeru poli(kwasu mlekowego)

W artykule przedstawiono badania ukierunkowane na doskonalenie właściwości modyfikowanych włóknin melt-blown z poli(kwasu mlekowego) przeznaczonych do konstrukcji sprzętu ochrony układu oddechowego przed zagrożeniami bio...

Wrażliwość systemu transportu masy i ciepła w ubiorze noworodka

Globalny model transportu masy i ciepła jest określony za pomocą bilansu ciepła ze składnikiem opisującym parowanie potu. Ciepło jest dostarczane przez metaboliczną produkcję ciepła, a tracone za pomocą różnych zjawisk w...

Discoloration of Cotton/Kapok Indigo Denim Fabric by Using a Carbon Dioxide Laser

In this work, a carbon dioxide laser was used for the color-fading treatment of cotton/kapok denim fabrics. The results were analysed thoroughly and compared with those of cotton denim fabric and PET denim fabric. Result...

Download PDF file
  • EP ID EP413796
  • DOI 10.5604/01.3001.0012.7510
  • Views 88
  • Downloads 0

How To Cite

Zhiyu Zhou, Chao Wang, Xu Gao, Zefei Zhu, Xudong Hu, Xiao Zheng, Likai Jiang (2019). Fabric Defect Detection and Classifier via Multi-Scale Dictionary Learning and an Adaptive Differential Evolution Optimized Regularization Extreme Learning Machine. Fibres and Textiles in Eastern Europe, 27(1), 67-77. https://europub.co.uk/articles/-A-413796