Finite Element Analysis of In-Service Loading on Hub Steering Knuckles: A Comparison of A356.0-T6 and Grey Cast Iron

Journal Title: Precision Mechanics & Digital Fabrication - Year 2025, Vol 2, Issue 1

Abstract

This study investigates the structural response of a hub steering knuckle from a Toyota Camry LE under typical in-service loading conditions, with a focus on material performance comparison. Aluminium alloy A356.0-T6 and grey cast iron were selected as candidate materials for the analysis. A three-dimensional (3D) model of the hub steering knuckle was generated using SolidWorks 2018, while static structural simulations were conducted with ANSYS Workbench R15.0 (2019 version). The factor of safety (FOS) was varied between 2.293 and 15 to account for the diverse operational scenarios. The applied loading conditions were derived from the cumulative forces acting on the four tyres of the vehicle, with a total force of 3938.715 N in the Z-direction. The steering moment was calculated to be 5400 N·mm at a perpendicular distance of 108 mm, while the braking force amounted to 3964.63 N·mm, with a corresponding braking moment of 277,524.73 N·mm, all determined using standard analytical formulas. A solid mesh type was employed for the finite element analysis (FEA), with a blended curvature-based meshing technique applied. The results of the analysis showed that, for A356.0-T6, the maximum equivalent Von Mises stress (VMS), maximum equivalent elastic strain, maximum principal stress, and maximum shear stress were 36.079 MPa, 0.00018393 mm/mm, 44.587 MPa, and 19.871 MPa, respectively. In comparison, grey cast iron exhibited values of 24.016 MPa, 0.00013104 mm/mm, 41.214 MPa, and 18.625 MPa, respectively. The maximum directional deformations along the Z-axis for A356.0-T6 and grey cast iron were 0.010135 mm and 0.007275 mm, respectively. The maximum total deformations were recorded at 0.069036 mm and 0.048725 mm for A356.0-T6 and grey cast iron, respectively. These findings suggest that both materials are suitable for use in hub steering knuckles, with grey cast iron being preferable when impact resistance is a priority, whereas A356.0-T6 is more suitable for applications requiring lightweight and corrosion resistance. The results contribute to the understanding of material selection for automotive components, considering both mechanical performance and operational demands.

Authors and Affiliations

Aniekan Essienubong Ikpe, Jephtar Uviefovwe Ohwoekevwo, Imoh Ime Ekanem

Keywords

Related Articles

Impact of Oil Film Dynamics on the Performance of Aeroengine Plain Bearings

This investigation addresses the issue of premature failure or damage to bearing components in aeroengines, which often results from the release of dissolved gases in the lubricant due to environmental pressure changes d...

Digitalization of Strategic Decision-Making in Manufacturing SMEs: A Quantitative SWOT-TOWS Analysis

The transition of contemporary manufacturing processes from digital to post-digital paradigms within the framework of Industry 5.0 necessitates the integration of both technological advancements and human-centered perspe...

Formulation of Stiffness and Strength Characteristics of Flexible Wire Ropes and Their Application in Photovoltaic Support Structures

The safety and functionality of flexible photovoltaic (PV) racking systems critically depend on understanding the force and deformation behavior of wire ropes. This study establishes mechanical equilibrium equations to d...

Innovative 3D-Printed Suppressor Designs: Enhancing Safety and Efficiency in Firearm Use

Advancements in 3D printing technology have enabled the creation of highly efficient and cost-effective suppressors, offering significant safety benefits for firearm users. Exposure to firearm noise, even in controlled e...

Analysis and Experimental Study of the Composite Mechanical Bulging Process for Medium-Duty Commercial Vehicle Drive Axle Housing

A novel composite mechanical bulging process suitable for the manufacture of medium-duty commercial vehicle drive axle housings is proposed. The analytical expression for the limit bulging forming coefficient of tube bla...

Download PDF file
  • EP ID EP767843
  • DOI https://doi.org/10.56578/pmdf020102
  • Views 7
  • Downloads 0

How To Cite

Aniekan Essienubong Ikpe, Jephtar Uviefovwe Ohwoekevwo, Imoh Ime Ekanem (2025). Finite Element Analysis of In-Service Loading on Hub Steering Knuckles: A Comparison of A356.0-T6 and Grey Cast Iron. Precision Mechanics & Digital Fabrication, 2(1), -. https://europub.co.uk/articles/-A-767843