HBV: Genomic Structure, HBVsAg Isolation and innovative Virotherapy Initiation in the Middle East

Journal Title: Journal of Plant Science and Phytopathology - Year 2017, Vol 1, Issue 2

Abstract

Hepatitis B virus (HBV) is one of the world’s major infectious diseases with 350 million people who are chronic carriers of HBV [1]. Significant minorities go on to develop liver cirrhosis or hepatocellular carcinoma and over 1 million die annually from HBV-diseased liver. Janahi E. at faculty of science, Bahrain University, Bahrain has submitted the following information [2], on HBV-genome organization as part of his Ph.D. degree (2007) in Imperial College, England. HBV genomic organization has 4 Open Reading Frames (ORFs) i.e. Pre-S/S Gene, Pre-C/C ORF, P ORF and X ORF. Regulatory Elements has 4 promoters (pre S2, pre S1, C promoters and X promoters), Pregenomic RNA, Enhancers (Enh 1 and Enh 2) where they are involved in cccDNA formation, Glococorticoid-Responsive Element which is located in X ORF and P ORF overlapping, Polyadenylation Signal (Direct Repeat 1 (DR1) and Direct Repeat 2 (DR2)), Epsilon-Stem Loop and Post-Transcriptional Regulatory Element. HBV genotype D is prevalent in our Middle East area. The HBV genome is a partially relaxed-circular dsDNA molecule consisting of a full length strand (minus strand) with a single unique nick and a complementary (positive strand) of variable length. HBV is considered as a para-retrovirus because its replication involves the reverse transcription of an intermediate-RNA function, of pre-genomic RNA (pgRNA). Replication of HBV genome starts with the encapsidation of the pgRNA and encodes HBV polymerase into an immature nucleocapsid formed by the viral core antigen. Inside the immature nucleocapsid, the viral polymerase converts pgRNA into minus-strand DNA, which in turn is used as a template for the synthesis of the plus-strand DNA, resulting in the formation of the characteristic mature double-stranded, relaxed circular DNA molecule [2]. HBVsAg has been isolated from Egyptian samples and identified using RTPCR [3-5]. Polymerase and HBVsAg regions have been also isolated and identified [5]. HBVsAg (S) gene has been identified at the band size 25.42 kDa [3,4]. Virotherapy for plant-based vaccine structure has been speculated for future work. Proposed CMV-HBVsAg chimeric-virus construct. Cucumber mosaic virus (CMV) 26 kDa hybrid coat protein (CP D/S) gene for 2 strains (CMV/S and CMV/D) were isolated and amplified from sgRNA 4 using F and R primers. Replicase gene (RP) and 30 kDa movement protein gene (MP) were used. Promoter (35sP). Nopaline synthase terminator (Nos3T) are constructed between Right and left boarder (RB and LB). Proposed BeYDV-HBVsAg chimeric virus construct. HBVsAg (S) protein -Bean Yellow Dwarf Begomovirus chimeric virus [6]. Long and short intergenic regions (LIR & SIR) of bean yellow dwarf Gemini virus as well as capsid protein (CP), movement protein (MP) and replication-associated protein (RepA) genes and as well as 35s P and Nos3T will be constructed between Right and left boarder (RB and LB). Brief processing of vaccine production is as follow: a. Virus and RNA sources, which is HBVsAg that has isolated as two isolates from Egypt by El-Kalamawy et al. [4]. Also Mahmoud and Hashem [5], have isolated HBVsAg and HBVpAg. Also, Elghannam et al. [3], have isolated HBVsSg. b. Computer-Assisted Analysis, c. in vitro Construction of Chimeric Viruses (1. Construct Design, 2. Target Gene (Sub-units), Gene Promotors, Terminators and Orientation, 3. Virus-Based Vector (Recombinant Viral Genes), 4. CP, Replicase and Movement Protein Genes, 5. Chimeric Virus Stability. 6. Plant Bioreactor Inoculation, Vacuum and Agrobacterium infiltration, 7. Transient Expression, 8. Gene Transformation, 9. Plant-expressed Protein Vaccine Confirmation (Symptomatology, EM and WB). Scaling up vaccine-containing plants, Expressed-protein vaccine purification and dosing. Bioreactor host plant has to be chosen.

Authors and Affiliations

Aboul-Ata E Aboul-Ata, Essam M Janahi

Keywords

Related Articles

Phytochemical content of leaf and stem of Marsilea quadrifolia (L.)

The present study was aimed to screen and quantify the phytochemicals by qualitative and quantitative analysis in methanol and aqueous leaf and stem extracts of Marsilea quadrifolia(L.). In qualitative analysis, the phyt...

Control of phytopathogenic microorganisms of post-harvest in tomato (Lycopersicon esculentum Mill.) with the use of citrus extract

Diseases are a major cause of post-harvest losses depending on season, region and management practices. Chemical control is the most used but with serious consequences for human health and the environment. This forces us...

Physiological impact of Zinc nanoparticle on germination of rice (Oryza sativa L) seed

Nanoparticles affects growth and development of Plant. Zinc is an important micronutrient that regulates various physiological responses in plant. Application of nanoparticles for modulating plants physiological response...

Detection of Clavibacter michiganensis subsp. michiganensis in tomato and chili seeds and farming area of Sinaloa, Mexico

Phytosanitary inspectors play an important role in diagnosing diseases in foreign plant material. However, some deficiencies have been detected in the detectionc ausing the entrance of many microorganisms. Therefore, it...

Life history strategies of the armored scale, Aulacaspis alisiana (Hemiptera: Coccoidea: Diaspididae) on the Japanese silver tree Neolitsea sericea (Bl.) Koidz. (Lauraceae) in Fukuoka, Japan

The armored scale Aulacaspis alisiana, is a serious invasive pest of the Japanese silver tree, Neolitsea sericea, causing serious damage to the tree in Japan. However there are currently no control approaches available f...

Download PDF file
  • EP ID EP334881
  • DOI 10.29328/journal.jpsp.1001007
  • Views 63
  • Downloads 0

How To Cite

Aboul-Ata E Aboul-Ata, Essam M Janahi (2017). HBV: Genomic Structure, HBVsAg Isolation and innovative Virotherapy Initiation in the Middle East. Journal of Plant Science and Phytopathology, 1(2), 59-61. https://europub.co.uk/articles/-A-334881