How can an otolaryngologist benefit from artificial neural networks?

Journal Title: Otolaryngologia Polska - Year 2012, Vol 66, Issue 4

Abstract

Artificial neural networks are informatic systems that have unique computational capabi-lities. The principle of their functioning is based on the rules of data processing in the brain. This article discusses the most important features of the artificial neural networks with reference to their applications in otolaryngology. The cited studies concern the fields of rhinology, audiology, phoniatrics, vestibulology, oncology, sleep apnea and salivary gland diseases. The authors also refer to their own experience with predictive neural models designed in the Department of Otolaryngology of the Jagiellonian University Medical College in Krakow. The applications of artificial neural networks in clinical diagnosis, automated signal interpretation and outcome prediction are presented. Moreover, the article explains how the artificial neural networks work and how the otolaryngologists can use them in their clinical practice and research.

Authors and Affiliations

Joanna Szaleniec, Jacek Składzień, Ryszard Tadeusiewicz, Krzysztof Oleś, Marcin Konior, Robert Przeklasa

Keywords

Related Articles

Wzrastająca częstość mikroraka brodawkowatego tarczycy i uzupełniające leczenie chirurgiczne – konieczne, czy nie?

Mikrorak brodawkowaty tarczycy (PTMC, ang. papillary thyroid microcarcinoma) jest definiowany jako rak brodawkowaty, którego maksymalna średnica nie przekracza 1 cm. Częstość występowania raka tarczycy wzrosła w ciągu os...

Endovascular Treatment of Hereditary Hemorrhagic Telangiectases of the Tongue

Hereditary hemorrhagic telangiectasia, also known as Osler-Weber-Rendu disease, is an autosomal dominant disorder involving vascular abnormalities of various organs. Telangiectases are frequently observed, predominantly...

Zapalenie nerwu przedsionkowego (vestibular neuritis) – opis przypadku

Vestibular neuritis is a group of symptoms resulting from a sudden unilateral vestibular dysfunction. It seldom occurs in children (approximately 7%). Its etiology and pathogenesis are unknown, although most researchers...

Korelacje między wskaźnikiem AHI (Apnea/Hypopnea Index), a wybranymi parametrami morfologicznoklinicznymi u chorych z jednostronnym lub obustronnym upośledzeniem drożności nosa

Wprowadzenie: Celem pracy była ocena korelacji między wskaźnikiem AHI (Apnea/Hypopnea Index) a wybranymi parametrami morfologiczno-klinicznymi u chorych z jednostronnym lub obustronnym upośledzeniem drożności nosa. Mater...

Tumors of the parotid gland – management and results of surgical treatment

Introduction. Tumors of the salivary glands are uncommon and represent 2–4% of head and neck neoplasms. Most tumors originate in the parotid gland, from which 10 to 15% are found to be malignant. Different methods of sur...

Download PDF file
  • EP ID EP52060
  • DOI -
  • Views 111
  • Downloads 0

How To Cite

Joanna Szaleniec, Jacek Składzień, Ryszard Tadeusiewicz, Krzysztof Oleś, Marcin Konior, Robert Przeklasa (2012). How can an otolaryngologist benefit from artificial neural networks?. Otolaryngologia Polska, 66(4), 241-248. https://europub.co.uk/articles/-A-52060