Identification of the Linearized Model of Controller Dynamics and Danfoss Temperature Control Valve According to the Passive Experiment

Abstract

Main purpose of the article is to provide designers and researchers with a dynamics models of a controller for refrigerating equipment with one thermal control valves in conjunction with a regulatory body.. This article is devoted to an analysis of the trends improve refrigeration efficiency by upgrading the control system of a thermostatic expansion valve. It is shown that Danfoss refrigeration equipment increases the efficiency of the formation of the cold due to changes in the evaporator superheat setting. The main idea of upgrading is to use a systems approach to the consideration of refrigeration equipment in conjunction with the cooling chamber and the products which are stored in it. To realize this idea one has developed a new block diagram of the cooling system as a multidimensional follow-up system that operates in conditions of air temperature changes in the refrigerating chamber and fluctuations of the refrigerant temperature and its pressure. The definition of a linearized model took place in three stages. In the first stage, based on the data of the passive experiment, spectral and cross spectral densities of signals are obtained. In the second stage, based on the results of the first, the transfer functions of the system elements and the filtering block are defined. In the third stage, the verification of the identification results, which used experimental data and received transfer functions in the second stage, was performed. The separation of the signal records that are active at the inputs and outputs of the AK-CC 550 controller and Danfoss thermostat valve allows you to determine the linearized pattern of the dynamics of the specified elements, which corresponds to the mode of operation of these elements during the recording of signals. The new transfer functions obtained form the basis for adapting the known methods of synthesis of control systems to the definition of the structure and parameters of the law of control, which is aimed at improving the efficiency of the use of cold in real operating conditions.

Authors and Affiliations

Dmytro Luzshkov, Sergiy Osadchy, Olexandr Didyk

Keywords

Related Articles

Mathematical model of static dryer heat balance

In connection with constant growth of prices for energy sources, processing units, where there are thermal processes, require special attention due to the high share of energy consumption in the cost structure of product...

Автоматичне керування тривалістю індукційного наплавлення

Розглянуто вплив швидкості переміщення деталі в полі індуктора на якість нанесеного композиційного покриття при неперервно-послідовному індукційному наплавленні.

Мінімізація втрат енергії під час реалізації змін продуктового асортименту

В статті приведено методику оцінювання помилок при керуванні об’єктом з несприятливими динамічними характеристиками, під час зміни завдання. Практично доведено необхідність у здійсненні супроводження процесу керування в...

Повышение износостойкости газотермических покрытий из железо-углеродистных сплавов электроконтактной обработкой

Предложен способ повышения износотойкости газотермических покрытий из железо-углеродистных сплавов электроконтактной обработкой (ЭКО). В основе способа лежит создание и использование фазово-структурных деформационных пре...

Устройства и методы автоматического управления на основе пневмоструйных элементов в средствах механизации сельского хозяйства

Рассмотрены вопросы применения пневмоструйных элементов для автоматического управления в средствах механизации. Устройства на основе пневмоструйных элементов пневмоники могут также применяться при посеве, в результате че...

Download PDF file
  • EP ID EP509228
  • DOI 10.32515/2409-9392.2018.31.150-158
  • Views 63
  • Downloads 0

How To Cite

Dmytro Luzshkov, Sergiy Osadchy, Olexandr Didyk (2018). Identification of the Linearized Model of Controller Dynamics and Danfoss Temperature Control Valve According to the Passive Experiment. Центральноукраїнський науковий вісник. Технічні науки, 31(), 150-158. https://europub.co.uk/articles/-A-509228