Investigating the Interaction between Soil and Cultivator Blade by Numerical Simulation and Validation of Results by Soil Bin Tests

Journal Title: Journal of Agricultural Machinery - Year 2022, Vol 12, Issue 4

Abstract

IntroductionSeedbed preparation, seeding, and transplanting are usually based on mechanical soil tillage. Tillage by cutting, mixing, overturning, and loosening the soil can modify the physical, mechanical, and biological properties of soil. These days, because of soil protection, the use of tillage tools is less and less recommended, and some implements such as cultivators are preferred to primary tillage tools such as plows. Experimental study of soil-tool interaction and field measurements of the mechanics of tillage tools are usually time-consuming and costly. On the other hand, the variety of variables and uncontrolled conditions add other dimensions to the complexity of this method. Also, the experimental and analytical methods do not have a comprehensive view of stress distribution and soil deformation in the soil-tool interaction process.Materials and MethodsThe main purpose of this study is to validate the results of numerical simulations in two phases of experimental tests: in soil bin environment and in finite element computer simulations. Experimental tests were performed in the soil bin environment of the Department of Mechanical Engineering of Biosystems, Urmia University, which has a soil bin facility with dimensions of length and width of 24 and 2 m, respectively, and has clay loam soil. Before experimental tests, soil preparation was performed by using some special tillage implements (harrow, leveler, and roller) which were attached to the soil bin (Figure.1). For experimental tests, a mechanism set consisting of two cultivator blades with a width of 15cm, a length of 20cm, and at a spacing of 35cm from each other was prepared and constructed. The relevant mechanism is designed to have the ability to change the tillage depth. Data were collected at three different soil depth levels of 6, 10, and 14cm in the soil bin with three replications. Data recording was performed using a 10-channel data logger with load cell connectivity and data storage ability. Also, in this study, the Drucker-Prager model as a finite element simulation method was used to calculate the stress during the soil-tool relationship. ABAQUS 6.10.1 software was used to simulate the cultivator tine. To solve the problem, the soil parameters were defined as presented in Table 1, and then the interaction between the soil-tool model and the necessary constraints, including boundary conditions, were defined. In the next step, meshing was applied to the constructed model.Results and DiscussionIn the results section, first, the results related to the amount of traction force required for the tillage tine in the simulation were calculated and then compared with the soil bin experimental tests. The traction force of the finite element simulation results for three tillage depths of 6, 10, and 14 cm in three principal directions is shown in Figure 4. A comparison of simulation and experimental results showed that there is a good agreement between them. In comparison, the simulation error range of the three depths of 6, 10, and 14 cm has shown 7.3, 5.6, and 4.16% at a speed of 2.5 kmh-1, respectively, as the velocity studied in this research. In the next section, the results of stress distribution contours in the soil and finally the overlap of the blade effect were discussed. Figure 6 shows the status of stress contours at three depths. By increasing the depth of the tine at the three depth levels studied, the stress range is shifted from the soil surface to its depth. For this purpose, at the maximum depth studied in this study (14 cm), it shows that the stress propagation to the soil surface is less than at other depths. Also, with decreasing depth, for a depth of 6 cm, the maximum stress was on the top soil surface, in other words, more deformation was seen on the soil surface.ConclusionComparing the simulation results for predicting traction force with the results of experimental tests has led to relatively acceptable results and the maximum traction force prediction error at different depths has been about 7.3%.The distribution of stress in the soil was observed due to the tine depth. The highest intensity of stress propagation was observed at the soil surface; and the highest soil surface deformation at a depth of 6 cm. With increasing depth, both parameters of stress and soil surface deformation have decreased. According to the results of the studied blades, it is better to use these types of tillage tools only at lower depths. Also, in evaluating the overlap of the soil loosening zone in the side-by-side tines, it proves the superiority of the tine performance at lower depths.

Authors and Affiliations

H. Mahboub Yangeje,A. Mardani,

Keywords

Related Articles

A Multi-Objective Optimization to Determine The Optimal Patterns of Sustainable Agricultural Mechanization Using NSGA-II Algorithm

IntroductionThe development of mechanization and machine technology can have positive and negative effects on the economic, social, and environmental conditions of a region. Conflicts in these areas complicate the select...

Effects of Drum Speed and Feed Rate on Damaged Wheat Grain During Threshing Operation

In this research the effects of drum speed and feed rate on the amount of wheat grain damages during threshing operation were investigated. A local flail type threshing machine for threshing wheat at three different drum...

Design, Development and Evaluation of a New Motorized Hydraulic Hole-digger for Spot Treatment

Introduction Nowadays, the best method for fertilizing trees is spot treatment via hole-digger. Conventional mechanical hole-diggers have several drawbacks such as auger’s non-continuous and limited speeds due to using...

Analysis of Factors Affecting The Management of Overall Energy Efficiency of Tractor-Implement by Real-Time Performance Monitoring

Overall energy efficiency (OEE) is an important indicator of energy consumption in tillage operations. Tillage energy was studied objectivity to accurately measure the OEE of MF399-4WD tractor. The tractor was equipped w...

Effect of Bio Ethanol and Diesel Blend on Small Diesel Engine Vibration

The use of Bio-ethanol as an alternative diesel engine fuel is rapidly increasing. Bio-ethanol is mixed with diesel fuel at different ratios and used in CI and SI engines. Since vibrations have direct effects on users a...

Download PDF file
  • EP ID EP718059
  • DOI https://doi.org/10.22067/jam.2021.70572.1041
  • Views 62
  • Downloads 0

How To Cite

H. Mahboub Yangeje, A. Mardani, (2022). Investigating the Interaction between Soil and Cultivator Blade by Numerical Simulation and Validation of Results by Soil Bin Tests. Journal of Agricultural Machinery, 12(4), -. https://europub.co.uk/articles/-A-718059