Kiwifruit Classification using Impact- Acoustic Technique and Artificial Neural Network

Journal Title: Journal of Agricultural Machinery - Year 2019, Vol 9, Issue 2

Abstract

Introduction Fruits and vegetables play an important role in food supply and public health. This group of agricultural products due to high humidity are perishable and most of them (5 to 50 percent) waste during post-harvest operation. Decreasing and minimizing such waste as "hidden harvest" could be an effective way to save food and increase profitability. Despite the surplus of the fruit production in the country, our position in terms of exportation is not commensurate with production, so measurements and grading on the basis of qualitative parameters such as firmness, taste, color, and shape can influence the marketing and export of fruit. In this research, application of an acoustic test is considered to achieve an effective and economic technology in the field to determine the stiffness of kiwifruit in post-harvest step. The aim of this study is to investigate the stiffness index of kiwifruit and provide a classification algorithm in the post-harvest step by using the non-destructive method of processing impact acoustic signals. Materials and Method In this research, an acoustic-based intelligent system was developed and the possibility of using the acoustic response to classify kiwifruit into soft, semi-soft and stiff categories was studied. 150 samples of Hayward variety of Kiwifruit was used during the 18 days shelf life in controlled conditions of temperature and humidity. Analyses were done in 9 sets per two days. In each analysis, an acoustic test was done by 48 samples in both free fall condition and fall from a conveyor belt. The feature extraction of acoustic signals in both the time domain and frequency domain has done, then the classification of samples was done by using the Artificial Neural Network. After getting the impact signals of stiff, semi-soft and soft samples, stiffness of kiwifruits identification has done by using acoustic features. The stiffness of kiwifruit samples in this study was measured to be 15.9±4.9 (N) by using the Magnes- Taylor test. Finally, samples were classified into stiff, semi-soft and soft by comparison of maximum force and flux of signals amplitude. Results and Discussion The results showed that the features of CF and maximum amplitude in the time domain have high accuracy in kiwifruit classification. The frequency resonances as environmental noises or impact position are out of control in the time domain which causes a decrease in accuracy. So, the ANN by features of time domain has not the acceptable capability to identify the semi-soft samples. The identification of semi-soft samples is not easy because of having same properties of stiff and soft samples. Extracted features of frequency domain have the most capability of correct detection. The optimal network has five neurons in the hidden layer and 0.014782 of mean square error. The accuracy of correct detection of the optimal network was 93.3, 91.3 and 78.3 percent for stiff, semi-soft and soft samples, respectively. Because of using more features in the frequency domain, the classification of all categories was acceptable and identification of semi-soft samples was as good as stiff and soft samples. The results of combined features of time and frequency domain showed that the artificial neural network has less efficiency in comparison with the other two attitudes. The accuracy of identification and classification was decreased by adding the extracted features of the time domain. So achieving the most accuracy in classification is accomplishable just by using the features of the frequency domain. By comparing the results of both free fall and online tests, it is claimed that this research can be industrialized. Conclusion Comparison of all results shows that there was no significant difference in the capability of ANN for identification and classification of the sample in three categories. After all, we can use this method in online sorting of kiwifruits by controlling the vector and position of impaction.

Authors and Affiliations

F. Jannatdost,P. Ahmadi Moghaddam,F. Sharifian,

Keywords

Related Articles

Predicting Whole-body Vibration-based on Linear Regression Models and Determining Permissible Exposure Time of Tractor Operator

IntroductionThe permissible exposure time to vibration for the operator is one of the key factors in maintaining the operator's health while optimizing machinery and equipment. The tractor studied was the ITM475, manufac...

Estimation of Date Syrup Viscosity using Machine Vision and Artificial Neural Network

Introduction Science of rheology has numerous applications in various fields of the food industry such as process assessment, acceptance of products and sales. Fluid behavior changes during processing due to an adverse c...

Computer Vision Utilization for Detection of Green House Tomato under Natural Illumination

Agricultural sector experiences the application of automated systems since two decades ago. These systems are applied to harvest fruits in agriculture. Computer vision is one of the technologies that are most widely used...

Evaluating the Efficiency of Sugarcane Harvesting Units Using a Combined Approach to Data Envelopment Analysis and Data Mining

Every organization needs an evaluation system in order to be aware of the level of performance and desirability of its units. It is more important for agricultural companies, including agro-industries. In this study, 20...

Evaluation Energy Flow and Analysis of Energy Economy for Irrigated Wheat Production in Different Geographical Regions of Iran

Introduction Agriculture is an energy conversion process. In this process, solar energy, fossil fuel, and electricity are converted mainly into food and fiber. In the agricultural section, the trend of energy consumptio...

Download PDF file
  • EP ID EP717930
  • DOI https://doi.org/10.22067/jam.v9i2.71198
  • Views 68
  • Downloads 0

How To Cite

F. Jannatdost, P. Ahmadi Moghaddam, F. Sharifian, (2019). Kiwifruit Classification using Impact- Acoustic Technique and Artificial Neural Network. Journal of Agricultural Machinery, 9(2), -. https://europub.co.uk/articles/-A-717930