LOGICAL AND ANALYTICAL RECONSTRUCTION OF FORMATION OF MATHEMATICAL PARADIGM (ON EXAMPLE OF CREATION OF NON-EUCLIDEAN GEOMETRIES)

Journal Title: Філософські обрії - Year 2017, Vol 0, Issue 37

Abstract

In the article on the creation and study non-Euclidean geometries as a fundamental discovery there is made a logical and analytical reconstruction of the formation of a mathematical paradigm. It is shown that non-Euclidean geometries are inherent in all essential features of a fundamental discovery. First, non-Euclidean geometries as any fundamental discoveries serve as a solution of the fundamental problem of mathematical knowledge. Fundamental discoveries are ideological in nature, requiring separation of qualitatively new principles on which they are based. It is shown that Euclidean geometry has been a perfect geometric system since the works of ancient Greek geometers to the early nineteenth century. combining the real and the ideal features and having axioms consistent with the empirical experience and «common sense». The problem of the fifth postulate of Euclid, which was waiting for its solution for two thousand years becomes a fundamental problem in mathematics on the background of blurring of core mathematical concepts, especially «infinitely small value», «number», «probability», uncertainty of important mathematical operations as «differentiation», «integration», «adding numerical series» and so on. Second, discovery and components of non-Euclidean geometries as a fundamental problem are prepared by historical development of mathematical knowledge. For two thousand years there has been made mathematicians’ attempts to clarify the nature or prove the fifth postulate of Euclid. Theoretical aspects of the idea of creating of geometries other than Euclidean geometries are found in works of Kant, John. Sakkeri and others. All of them are inherent in a problem of interpretation of Euclid’s fifth postulate as a non-fundamental one, making it impossible for an adequate interpretation of the results. Awareness of the fundamental problem of the fifth postulate of Euclid is the key to its solution. It is proved that the ideas of non-Euclidean geometry systems arise from purely logical speculation about the nature of the axioms of Euclid. The existence of non-Euclidean geometries aslogically and correctly constructed systems prove that our intuitive understanding of space is not a purely logical necessity

Authors and Affiliations

Людмила Миколаївна ШЕНГЕРІЙ

Keywords

Related Articles

INTENSIONAL-PRAGMATICAL APPROACH TO D-PROPOSITIONS ANALYSIS: A CASE FOR METAMATHEMATICS

The paper is dedicated to the problem of analysis of D-propositions in mathematics (from the position of metamathematics). D-propositions, as for Mouloud and Lorenzen, are understood as sets of mathematical proposition w...

CHRISTOCENTRIC OF THE IDEAL STATE-BUILDING IN THE CONCEPT BY VYACHESLAV LIPINSKY

The processes of creation of the state, law and rights are defined relational links between them, caused, in turn, a constant spiritual, which feeds the national existence. Ukrainian national idea, which defines these ar...

IMAGE OF HOW POLYPHONIC FOLK MUSIC THINKING

Analyzed the origin and evolution of forms of polyphonic performance as the image of the national musical thinking. The analysis of the literature on the subject based on the experience of leading researchers of folk-son...

ЦІННІСТЬ ІСТОРИКО-ФІЛОСОФСЬКОЇ СПАДЩИНИ І. МІРЧУКА: АКАДЕМІЧНО- ПЕДАГОГІЧНИЙ АСПЕКТ

У статті проаналізовано цінність історико-філософської спадщини І. Мірчука в контексті академічно-педагогічного на¬прямку діяльності мислителя. Показано, що ключовим вектором усієї творчості філософа була турбота за долю...

ФЕНОМЕН ІНТЕЛІГЕНТНОСТІ: ПРОБЛЕМИ ФІЛОСОФСЬКОЇ ІНТЕРПРЕТАЦІЇ

Проаналізовано сучасний стан і тенденції в філософській інтерпретації феномену інтелігентності. Робиться акцент на необхідності з’ясування ролі та значення інтелігенції у сучасному суспільстві. Підкреслюється необхідніст...

Download PDF file
  • EP ID EP496221
  • DOI 10.5281/zenodo.808772
  • Views 92
  • Downloads 0

How To Cite

Людмила Миколаївна ШЕНГЕРІЙ (2017). LOGICAL AND ANALYTICAL RECONSTRUCTION OF FORMATION OF MATHEMATICAL PARADIGM (ON EXAMPLE OF CREATION OF NON-EUCLIDEAN GEOMETRIES). Філософські обрії, 0(37), 52-59. https://europub.co.uk/articles/-A-496221