Математическая модель процесса переноса аэрозолей в подземных горных выработках
Journal Title: Математичне моделювання - Year 2017, Vol 1, Issue 1
Abstract
MATHEMATICAL MODEL OF A PROCESS TO TRANSPORT AEROSOLS WITHIN UNDERGROUND MINE WORKINGS Ikonnikova N.A., Yurchenko А.A., Ikonnikov M.Y., Litvinenko A.A. Abstract Topicality of the studies is in the following: solution of problems concerning dust prevention within underground mine workings should involve disperse control of the dust, sizes of constantly floating fine fractions, and boundaries of coarse dust fractions deposition. Objective of the studies is to develop mathematical model concerning transport of aerosols by means of air current within underground mine workings. As a result of the task execution, analytical dependence of dust particle deposition velocity on air flow velocity within a mine working, density of dust particles and their diameter and viscosity of deposition medium has been obtained. Engineering method has been developed to calculate dynamic parameters of both deposition and transport of coal dust represented by analytical dependences of aerosol deposition velocity, distance of the particles transport upon their density and deposition medium density, fractional composition of the particles, and air velocity in the context of turbulent condition of the air current motion. The developed technique makes it possible to determine diameters of dust particles, being suspended constantly, for certain aerodynamic parameters of a mine working as well as boundary of different dust fractions deposition on the floor. The calculations have shown that in the context of Western Donbas mines, coal dust particles with 5μ size and less are almost constantly in a suspended state on a ventilation drift. Boundaries of coal dust of different fractions on a ventilation drift of a site after their transport out of longwall have been determined. In the context of dust particles, which diameter is 10 μ, distance of transport by means of air current is 773 m; if their diameter is 25 μ, then transportation distance is 125 m; if their diameter is 50 μ, then transportation distance is 27 m. References [1] Zhuravlov V.P., Demisheva Ye.F., Spirin L(1988), A. Aerodinamicheskiye metody bor'by s ugol'noy pyl'yu. [Aerodynamic methods of fight against a braize], Iz-vo Rostovskogo universiteta, Rostov, Russia. [2] Romanenko S.B. (2007), Apparatno-programmnyy kompleks kontrolya urovney zapylonnosti na baze datchikov novogo pokoleniya. [Hardwarily-programmatic complex of control of levels of dustiness on the base of sensors of new generation], Gornyy informatsionno - analiticheskiy byulleten', s. 273–279. [3] Mednikov Ye.P. (1981), Turbulentnyy perenos i osazhdeniye aerozoley, [Turbulent transfer and besieging of aerosols].: Nauka, Moscow, Russia. [4] Burchakov, A.S., Moskalenko, E.M. Dinamika aerozoley v gornykh vyrabotkakh [Aerosol dynamics in mine workings].-M. Publishing House Nauka, 1965.– 65pp. [5] Bor'ba s pyl'yu v ochistnykh zaboyakh / Grodel' G.S., Gubskiy YU.N., Krivokhizha B.M., Shpak A.F.(1983), [Fight against a dust in cleansing coalfaces] Tekhníka, Kyiv, Ukraine [6] Aerologiya gornykh prepriyatiy [. Aerology of mountain enterprises] /V.I. Golin'ko, YA.YA. Lebedev, A.A. Litvinenko, O.A. Mukha, (2015), []; M-vo obrazovaniya i nauki Ukrainy, Nats. gorn. un-tyu. –Dnepropetrovsk, NGU, Ukraine. [7] Rudnichnaia ventiljatsiia [Mine ventilation]: reference book / Grashchenkov, N.F., Petrosian, A.E., Frolov, M.A. et al. – M. Nedra, 1988. – 440 pp. [8] Bradshow, P. Vvedenie v turbukentnost' i ejo izmerenie [An Introduction to Turbulence and its Measurement]. – M.: Mir, 1974. – 280 pp.
Authors and Affiliations
Н. А. Иконникова, А. А. Юрченко, М. Ю. Иконников
ОБҐРУНТУВАННЯ ВИБОРУ ЧИСЕЛЬНОГО МЕТОДУ ДЛЯ ВИРІШЕННЯ ЗАВДАННЯ ПЛАВЛЕННЯ, КОМБІНОВАНОГО АЛЮМОВМІСЬКОГО РОЗКИСЛЮВАЧА ЦИЛІНДРИЧНОЇ ФОРМИ, З ОБВАЖНЮВАЧЕМ, В ЗАХИСНІЙ ОБОЛОНЦІ
THE JUSTIFICATION FOR SELECTION OF NUMERICAL METHOD FOR MELTING PROBLEM SOLUTION OF WEIGHTED COMBINED ALUMINUM-CONTAINING DEOXIDIZER OF CYLINDRICAL FORM IN PROTECTIVE SHELL Babenko M.V., Voloshin R.V., Krivosheev G.A. A...
МОДЕЛЮВАННЯ КОНВЕКТИВНОЇ ТЕПЛОПРОВІДНОСТІ ДВОШАРОВОГО СЕРЕДОВИЩА ПРИ НЕОДНОРІДНИХ ГРАНИЧНИХ УМОВАХ
PROBLEM OF CONVECTIVE HEAT CONDUCTIVITY OF A DOUBLE ENVIRONMENT UNDER HEAVY BORDER CONDITIONS Pyshnograev Y.N., Shtanko A.I. Abstract In this paper, we consider the special cases of the application of the method of fini...
Розробка математичної моделі процесу мийки шламів абразивної обробки металів в миючому розчині
DEVELOPMENT OF MATHEMATICAL MODEL OF SLUDGE CLEANING PROCESS 0F ABRASIVE METAL TREATMENT IN THE CLEANING SOLUTION Vernyhora V.D. Abstract At present engineering companies have huge problems with waste sludge obtained af...
Дослідження джерел вхідної інформації і розробка структури та основних технічних параметрів засобу відображення інформації в АСК ТП доменної печі
The sources of input information in the APCS blast furnace, process parameters that are monitored and developed the structure of a display means information that allows you to display the settings on the screen.
Математична модель динаміки дроту в ковші, що враховує напруження згинання і кручення
The article is devoted to the development of mathematical model of the dynamics of cored wire in steel ladle dur-ing secondary treatment of the metal. Unlike previous models in addition to bending stress the wire`s torsi...