ОБҐРУНТУВАННЯ ВИБОРУ ЧИСЕЛЬНОГО МЕТОДУ ДЛЯ ВИРІШЕННЯ ЗАВДАННЯ ПЛАВЛЕННЯ, КОМБІНОВАНОГО АЛЮМОВМІСЬКОГО РОЗКИСЛЮВАЧА ЦИЛІНДРИЧНОЇ ФОРМИ, З ОБВАЖНЮВАЧЕМ, В ЗАХИСНІЙ ОБОЛОНЦІ
Journal Title: Математичне моделювання - Year 2018, Vol 1, Issue 1
Abstract
THE JUSTIFICATION FOR SELECTION OF NUMERICAL METHOD FOR MELTING PROBLEM SOLUTION OF WEIGHTED COMBINED ALUMINUM-CONTAINING DEOXIDIZER OF CYLINDRICAL FORM IN PROTECTIVE SHELL Babenko M.V., Voloshin R.V., Krivosheev G.A. Abstract This paper presents a comparative analysis of numerical calculation methods for model problem of prismmeltingunder asymmetric boundary conditions to substantiate the choice of the numerical method for solving the melting problem of a weighted combined aluminum-containing deoxidizer of cylindrical form in a protective shell in the melt and under asymmetric boundary conditions at the slag-metal interface. The melting problem of a weighted combined aluminum-containing deoxidizer of cylindrical form in a protective shell relates to the problems of thermal conductivity with movable interfaces. The aim of the article is to compare the method of Duzimber used for this problem and the more well-known Nikitenko method (a method with explicit boundary separation) that has been successfully applied to solve similar problems and is confirmed by numerous laboratory experiments. The data for comparison were taken from the solution of the model prism melting problem under asymmetric boundary conditions. Data analysis shows that the divergence between the calculation results does not exceed 10 percent and decreases significantly as the difference grid thickens. Thus, the adequacy of the developed algorithms and the results of melting calculation of weighted combined aluminum-containing deoxidizer of cylindrical form in a protective shell on the basis of the Duzimber method is confirmed by a good agreement between the calculation results of model problem of prism melting under asymmetric boundary conditions by Nikitenko and Duzimber methods, and the latter has a much simpler algorithm. References [1] R.V.Voloshin, M.V.Babenko. Matematicheskaya model' plavleniya utyazhelennogo kombinirovannogo alyumosoderzhashchego raskislitelya tsilindricheskoy formy v zashchitnoy obolochke // Matematicheskoye modelirovaniye. – 2015. – № 1 (32). – S. 33 – 35. [2] R.V.Voloshin, M.V.Babenko, O.A.Zhul'kovskiy, I.I.Zhul'kovskaya, YA.A.Degtyarenko. Algoritm rascheta plavleniya utyazhelennogo kombiniro¬vannogo alyumosoderzhashchego raskislitelya tsilindricheskoy formy v zashchitnoy obolochke // Matematicheskoye modelirovaniye. – 2016. – № 2 (35). – S. 39–42. [3] Pavlyuchenkov I. A. Chislennoye modelirovaniye (na osnove metoda Dyuzimbera) protsessov plavleniya tel v rasplave // Matematicheskoye modelirovaniye. – 1997. – № 2 S. 37–43. [4] Babenko N. V. Algoritm rascheta (na osnove metoda Dyuzimbera) dvukhmernoy zadachi plavleniya tsilindra v rasplave / V. Babenko, I.A. Pavlyuchenkov // Metallurgiya teplotekhnika: Sb. nauk. Rabot Natsional'noy metallurgicheskoy akademii Ukrainy. – Dnepropetrovsk CHP Grek A.S., 2006. S. 3–7. [5] Nikitenko N.I. Sopryazhennyye i obratnyye zadachi teplomassoperenosa. – Kiyev: Naukova dumka, 1988. – 240 s. [6] Nikitenko N.I., Snezhkin YU.F., Sorokovaya N.N., Kol'chik YU.N. Molekulyarno-radiatsionnaya teoriya i metody rascheta teplo- i massoobmena. – M .: Nauchnaya mysl',. 2014 – 743 s. [7] Pavlyuchenkov I.A. Teoriya i tekhnologiya plavleniya materialov v zhidkoy stali: Dis. dokt. tekhn. nauk. – Dneprodzerzhinsk, 1995. – 330 s.
Authors and Affiliations
М. В. Бабенко, Р. В. Волошин, Г. А. Кривошеєв
Оптимальний розподіл ресурсів в багатопроцесорних систе-мах
OPTIMAL RESOURCES ALLOCATION IN MULTIPROCESSORS SYSTEMS Kosolap A.I., Volynets N.S. Abstract The efficiency of a multiprocessor system depends on the optimal allocation of tasks to the computing nodes. The problem of d...
Тheoretical foundations of expansion of the numerical space
ТЕОРЕТИЧНІ ОСНОВИ РОЗШИРЕННЯ ЧИСЛОВОГО ПРОСТОРУ Романюк О.Д., Романюк Р.О. Реферат Логічний аналіз історії розвитку теорії чисел і особливо векторної алгебри, наштовхував на ідею введення «тримірних» чисел, над якими...
Оптимізація роботи металургійного підприємства шляхом аналізу експлуатаційних показників роботи кар’єрних самоскидів
OPTIMIZATION OF THE WORKOF METALLURGICAL ENTERPRISES BY ANALYZING OPERATIONAL PARAMETERS OF THE WORK OF DUMPTRUCKS Sereda B.P., Mukovska D.Y. Abstract In the article a comparative analysis of the spatial performance in...
Математическая модель тепло- и массопереноса в первом периоде сушки плоского слоя дисперсного материала
The analytical method for calculating the temperature field and the kinetics of evaporation of moisture during drying heat "massive" flat layer of moist particulate material.
Сферична частинка твердого певного розміру як основа процесу моделювання розпушення гірських порід
It is established that a solid spherical particle of a certain size can be the basis of the modeling process disintegration of rocks. A mixture consisting of spherical particles of uniform size, a loosening factor 1.3514...