Mechanisms and modeling of electrohydrodynamic phenomena
Journal Title: International Journal of Bioprinting - Year 2019, Vol 5, Issue 1
Abstract
The purpose of this paper is to review the mechanisms of electrohydrodynamic (EHD) phenomenon. From this review, researchers and students can learn principles and development history of EHD. Significant progress has been identified in research and development of EHD high-resolution deposition as a direct additive manufacturing method, and more effort will be driven to this direction soon. An introduction is given about current trend of additive manufacturing and advantages of EHD inkjet printing. Both theoretical models and experiment approaches about the formation of cone, development of cone-jet transition and stability of jet are presented. The formation of a stable cone-jet is the key factor for precision EHD printing which will be discussed. Different scaling laws can be used to predict the diameter of jet and emitted current in different parametrical ranges. The information available in this review builds a bridge between EHD phenomenon and threedimensional high-resolution inkjet printing.
Authors and Affiliations
Dajing Gao, Donggang Yao, Steven K. Leist, Yifan Fei, Jack Zhou
3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering
A major limitation of using synthetic scaffolds in tissue engineering applications is insufficient angiogenesis in scaffold interior. Bioactive borate glasses have been shown to promote angiogenesis. There is a need to i...
New microorganism isolation techniques with emphasis on laser printing
The study of biodiversity, growth, development, and metabolism of cultivated microorganisms is an integral part of modern microbiological, biotechnological, and medical research. Such studies require the development of n...
Of balls, inks and cages: Hybrid biofabrication of 3D tissue analogs
The overarching principle of three-dimensional (3D) bioprinting is the placing of cells or cell clusters in the 3D space to generate a cohesive tissue microarchitecture that comes close to in vivo characteristics. To ach...
Application of piezoelectric cells printing on three-dimensional porous bioceramic scaffold for bone regeneration
In recent years, the additive manufacture was popularly used in tissue engineering, as the various technologies for this field of research can be used. The most common method is extrusion, which is commonly used in many...
Optimized vascular network by stereolithography for tissue engineered skin
This paper demonstrates the essential and efficient methods to design, and fabricate optimal vascular network for tissue engineering structures based on their physiological conditions. Comprehensive physiological require...