Optimized vascular network by stereolithography for tissue engineered skin
Journal Title: International Journal of Bioprinting - Year 2018, Vol 4, Issue 2
Abstract
This paper demonstrates the essential and efficient methods to design, and fabricate optimal vascular network for tissue engineering structures based on their physiological conditions. Comprehensive physiological requirements in both micro and macro scales were considered in developing the optimisation design for complex vascular vessels. The optimised design was then manufactured by stereolithography process using materials that are biocompatible, elastic and surface bio-coatable. The materials are self-developed photocurable resin consist of BPA-ethoxylated-diacrylate, lauryl acrylate and isobornylacrylate with Irgacure® 184, the photoinitiator. The optimised vascular vessel offers many advantages: 1) it provides the maximum nutrient supply; 2) it minimises the recirculation areas and 3) it allows the wall shear stress on the vessel in a healthy range. The stereolithography manufactured vascular vessels were then embedded in the hydrogel seeded with cells. The results of in vitro studies show that the optimised vascular network has the lowest cell death rate compared with a pure hydrogel scaffold and a hydrogel scaffold embedded within a single tube in day seven. Consequently, these design and manufacture routes were shown to be viable for exploring and developing a high range complex and specialised artificial vascular networks.
Authors and Affiliations
Xiaoxiao Han, Julien Courseaus, Jamel Khamassi, Nadine Nottrodt, Sascha Engelhardt, Frank Jacobsen, Claas Bierwisch, Wolfdietrich Meyer, Torsten Walter, Jürgen Weisser, Raimund Jaeger, Richard Bibb, Russell Harris
Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide
In recent years, hydrogels have been used as important biomaterials for 3D printing of three dimensional tissues or organs. The key issue for printing a successful scaffold is the selection of a material with a good prin...
Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: A Perspective
Biofabrication is an emerging multidisciplinary field that makes a revolutionary impact on the researches on life science, biomedical engineering, and both basic and clinical medicine, has progressed tremendously over th...
New microorganism isolation techniques with emphasis on laser printing
The study of biodiversity, growth, development, and metabolism of cultivated microorganisms is an integral part of modern microbiological, biotechnological, and medical research. Such studies require the development of n...
Bioprinting of Multimaterials with Computer-aided Design/Computer-aided Manufacturing
Multimaterials deposition, a distinct advantage in bioprinting, overcomes material’s limitation in hydrogel-based bioprinting. Multimaterials are deposited in a build/support configuration to improve the structural integ...
Digital Light Processing Based Three-dimensional Printing for Medical Applications
An additive manufacturing technology based on projection light, digital light processing (DLP), three-dimensional (3D) printing, has been widely applied in the field of medical products production and development. The pr...