Optimized vascular network by stereolithography for tissue engineered skin

Journal Title: International Journal of Bioprinting - Year 2018, Vol 4, Issue 2

Abstract

This paper demonstrates the essential and efficient methods to design, and fabricate optimal vascular network for tissue engineering structures based on their physiological conditions. Comprehensive physiological requirements in both micro and macro scales were considered in developing the optimisation design for complex vascular vessels. The optimised design was then manufactured by stereolithography process using materials that are biocompatible, elastic and surface bio-coatable. The materials are self-developed photocurable resin consist of BPA-ethoxylated-diacrylate, lauryl acrylate and isobornylacrylate with Irgacure® 184, the photoinitiator. The optimised vascular vessel offers many advantages: 1) it provides the maximum nutrient supply; 2) it minimises the recirculation areas and 3) it allows the wall shear stress on the vessel in a healthy range. The stereolithography manufactured vascular vessels were then embedded in the hydrogel seeded with cells. The results of in vitro studies show that the optimised vascular network has the lowest cell death rate compared with a pure hydrogel scaffold and a hydrogel scaffold embedded within a single tube in day seven. Consequently, these design and manufacture routes were shown to be viable for exploring and developing a high range complex and specialised artificial vascular networks.

Authors and Affiliations

Xiaoxiao Han, Julien Courseaus, Jamel Khamassi, Nadine Nottrodt, Sascha Engelhardt, Frank Jacobsen, Claas Bierwisch, Wolfdietrich Meyer, Torsten Walter, Jürgen Weisser, Raimund Jaeger, Richard Bibb, Russell Harris

Keywords

Related Articles

Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity

Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir–Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents...

Recent cell printing systems for tissue engineering

Three-dimensional (3D) printing in tissue engineering has been studied for the bio mimicry of the structures of human tissues and organs. Now it is being applied to 3D cell printing, which can position cells and biomate...

Bioprinting of osteochondral tissues: A perspective on current gaps and future trends

Osteochondral tissue regeneration has remained a critical challenge in orthopaedic surgery, especially due to complications of arthritic degeneration arising out of mechanical dislocations of joints. The common gold stan...

A novel 3D printing method for cell alignment and differentiation

The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic di...

Electrospun 3D multi-scale fibrous scaffold for enhanced human dermal fibroblasts infiltration

Electrospun polymeric nanofibrous scaffold possesses significant potential in the field of tissue engineering due to its extracellular matrix mimicking topographical features that modulate a variety of key cellular activ...

Download PDF file
  • EP ID EP678688
  • DOI -
  • Views 173
  • Downloads 0

How To Cite

Xiaoxiao Han, Julien Courseaus, Jamel Khamassi, Nadine Nottrodt, Sascha Engelhardt, Frank Jacobsen, Claas Bierwisch, Wolfdietrich Meyer, Torsten Walter, Jürgen Weisser, Raimund Jaeger, Richard Bibb, Russell Harris (2018). Optimized vascular network by stereolithography for tissue engineered skin. International Journal of Bioprinting, 4(2), -. https://europub.co.uk/articles/-A-678688