Bioprinting of osteochondral tissues: A perspective on current gaps and future trends
Journal Title: International Journal of Bioprinting - Year 2017, Vol 3, Issue 2
Abstract
Osteochondral tissue regeneration has remained a critical challenge in orthopaedic surgery, especially due to complications of arthritic degeneration arising out of mechanical dislocations of joints. The common gold standard of autografting has several limitations in presenting tissue engineering strategies to solve the unmet clinical need. However, due to the complexity of joint anatomy, and tissue heterogeneity at the interface, the conventional tissue engineering strategies have certain limitations. The advent of bioprinting has now provided new opportunities for osteochondral tissue engineering. Bioprinting can uniquely mimic the heterogeneous cellular composition and anisotropic extra-cellular matrix (ECM) organization, while allowing for targeted gene delivery to achieve heterotypic differentiation. In this perspective, we discuss the current advances made towards bioprinting of composite osteochondral tissues and present an account of challenges—in terms of tissue integration, long-term survival, and mechanical strength at the time of implantation—required to be addressed for effective clinical translation of bioprinted tissues. Finally, we highlight some of the future trends related to osteochondral bioprinting with the hope of in-clinical translation.
Authors and Affiliations
Pallab Datta, Aman Dhawan, Yin Yu, Dan Hayes, Hemanth Gudapati and Ibrahim T. Ozbolat
Hydrolytic Expansion Induces Corrosion Propagation for Increased Fe Biodegradation
Fe is regarded as a promising bone implant material due to inherent degradability and high mechanical strength, but its degradation rate is too slow to match the healing rate of bone. In this work, hydrolytic expansion w...
New microorganism isolation techniques with emphasis on laser printing
The study of biodiversity, growth, development, and metabolism of cultivated microorganisms is an integral part of modern microbiological, biotechnological, and medical research. Such studies require the development of n...
Physical stimulations and their osteogenesis-inducing mechanisms
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulatin...
Directed self-assembly software for single cell deposition
Laser direct-write (LDW) bioprinting methods offer a diverse set of tools to design experiments, fabricate tissue constructs and to cellular microenvironments all in a CAD/CAM manner. To date, we have just scratched the...
Utilising inkjet printed paraffin wax for cell patterning applications
We describe a method to prepare patterned environments for eukaryotic cells by inkjet printing paraffin wax onto a substrate. This technique bypasses the requirement to create a master mould, typically required with the...