Recent cell printing systems for tissue engineering
Journal Title: International Journal of Bioprinting - Year 2017, Vol 3, Issue 1
Abstract
Three-dimensional (3D) printing in tissue engineering has been studied for the bio mimicry of the structures of human tissues and organs. Now it is being applied to 3D cell printing, which can position cells and biomaterials, such as growth factors, at desired positions in the 3D space. However, there are some challenges of 3D cell printing, such as cell damage during the printing process and the inability to produce a porous 3D shape owing to the embedding of cells in the hydrogel-based printing ink, which should be biocompatible, biodegradable, and non-toxic, etc. Therefore, researchers have been studying ways to balance or enhance the post-print cell viability and the print-ability of 3D cell printing technologies by accommodating several mechanical, electrical, and chemical based systems. In this mini-review, several common 3D cell printing methods and their modified applications are introduced for overcoming deficiencies of the cell printing process.
Authors and Affiliations
Hyeong-jin Lee, Young Won Koo, Miji Yeo, Su Hon Kim and Geun Hyung Kim
Roles of support materials in 3D bioprinting – Present and future
Bioprinting has been introduced as a new technique in tissue engineering for more than a decade. However, characteristics of bioprinted part are still distinct from native human tissue and organ in terms of both shape fi...
Creation of a vascular system for organ manufacturing
The creation of a vascular system is considered to be the main object for complex organ manufacturing. In this short review, we demonstrate two approaches to generate a branched vascular system which can be printed using...
Exploring nanofibrous self-assembling peptide hydrogels using mouse myoblast cells for three-dimensional bioprinting and tissue engineering applications
Injured skeletal muscles which lose more than 20% of their volume, known as volumetric muscle loss, can no longer regenerate cells through self-healing. The traditional solution for recovery is through regenerative thera...
Bioprinting in cardiovascular tissue engineering: a review
Fabrication techniques for cardiac tissue engineering have been evolving around scaffold-based and scaffold-free approaches. Conventional fabrication approaches lack control over scalability and homogeneous cell distribu...
Formation of cell spheroids using Standing Surface Acoustic Wave (SSAW)
3D bioprinting becomes one of the popular approaches in the tissue engineering. In this emerging application, bioink is crucial for fabrication and functionality of constructed tissue. The use of cell spheroids as bioink...