Effect of inhomogeneous distribution of non-metallic inclusions on crack path deflection in G42CrMo4 steel at different loading rates

Journal Title: Frattura ed Integrità Strutturale - Year 2015, Vol 9, Issue 34

Abstract

 An inhomogeneous distribution of non-metallic inclusions can result from the steel casting process. The aim of the present study was to investigate the damaging effect of an inhomogeneous distribution of nonmetallic inclusions on the crack extension behavior. To this end, the fracture toughness behavior in terms of quasi-static J-a curves was determined at room temperature. Additionally, dynamic fracture mechanics tests in an instrumented Charpy impact-testing machine were performed. The fracture surface of fracture mechanics specimens was analyzed by means of scanning electron microscopy. It was shown that an inhomogeneous distribution significantly affected the path and, therefore, the plane of crack growth. Especially clusters of non-metallic inclusions with a size of up to 200 μm exhibited a very low crack growth resistance. Due to the damaging effect of the clusters, the growing crack was strongly deflected towards the cluster. Furthermore, crack tip blunting was completely inhibited when inclusions were located at the fatigue precrack tip. Due to the large size of the non-metallic inclusion clusters, the height difference introduced by crack path deflection was significantly larger than the stretch zone height due to the crack tip blunting. However, the crack path deflection introduced by a cluster was not associated with a toughness increasing mechanism. The e dynamic loading ( 1 0.5 5 s MPam 10   K ) did not result in a transition from ductile fracture to brittle fracture. However, the crack growth resistance decreased with increased loading rate. This was attributed to the higher portion of relatively flat regions where the dimples were less distinct.

Authors and Affiliations

S. Henschel, L. Krüger

Keywords

Related Articles

 Multiple crack propagation by DBEM in a riveted butt-joint:  a simplified bidimensional approach

 A Multi-Site Damage (MSD) crack growth simulation is presented, carried out by means of Dual Boundary Element Method (DBEM), in a two-dimensional analysis of a cracked butt-joint made of aluminium 2024 T3. An equ...

 Combining experimental and numerical analysis to estimate stress fields along the surface crack front

 Combining experimental and computational method for determination of the singular and the non-singular stress terms along the front of the 3D surface crack is proposed. Evaluation of the terms is based on comprehen...

 Analysis of cracking of low-alloy copper stretched at elevated temperature

 This paper presents both mechanical and structural aspects of micro-cracking of CuNi2Si copper alloy in CNCS grade revealed during the static tensile test in the temperature range between 20ºC and 800ºC. The...

 Energy dissipation mechanism and damage model of marble failure under two stress paths

 Marble conventional triaxial loading and unloading failure testing research is carried out to analyze the elastic strain energy and dissipated strain energy evolutionary characteristics of the marble deformation...

 Ultrasonic fatigue testing device under biaxial bending

 A new fatigue testing device has been developed to test specimens under biaxial loading at 20 kHz. A flat smooth specimen with a disc geometry is placed on a torus frame and cyclically loaded at the center of its&...

Download PDF file
  • EP ID EP164282
  • DOI 10.3221/IGF-ESIS.34.35
  • Views 61
  • Downloads 0

How To Cite

S. Henschel, L. Krüger (2015).  Effect of inhomogeneous distribution of non-metallic inclusions on crack path deflection in G42CrMo4 steel at different loading rates. Frattura ed Integrità Strutturale, 9(34), 326-333. https://europub.co.uk/articles/-A-164282