Numerical Evaluation of Electrohydrodynamic Flow and Particle Concentration Effects on the Wire-Plate Electrostatic Precipitator Efficiency

Journal Title: Applied Electromagnetics - Year 2022, Vol 10, Issue 2

Abstract

In this paper, a two-dimensional computational model is implemented to study all the necessary phenomena in a simple one-stage plane depositor by considering the interactions between the electrostatic field, the flow field, the charge of the particles and their turbulent motions. In the first step of this paper, while presenting the connections between electrostatic fields, particle dynamics and fluid dynamics, the mathematical model of the corona field, air flow and particle motion is explained. In the following, the electrical conditions (electric field and space charge) and the induced flux pattern are analyzed by the interaction of ion wind and the main gas flux in the studied model. Also, while examining the path of movement and accumulation of particles, their sediment distribution in the channel is investigated and the partial efficiency of particles with different diameters is calculated. In the following, the effect of electrohydrodynamic flux on the efficiency of the equipment is investigated. Finally, considering the normal logarithmic distribution for particles at the input of the sediment channel, the effect of different concentrations of particles at the input on the overall efficiency of the equipment is analyzed. This model is simulated in COMSOL software.

Authors and Affiliations

Mohammad Gholami, Hanif Kazerooni

Keywords

Related Articles

Numerical Evaluation of Electrohydrodynamic Flow and Particle Concentration Effects on the Wire-Plate Electrostatic Precipitator Efficiency

In this paper, a two-dimensional computational model is implemented to study all the necessary phenomena in a simple one-stage plane depositor by considering the interactions between the electrostatic field, the flow fie...

Spectroscopic characterization of asphaltene deposition extracted from oil wells at the southwest of Iran using Raman and FT-IR spectroscopy

Asphaltene is a component of crude oil that creates a variety of problems in the oil industry, including reservoir wettability alteration,, corrosion in the pipelines, and pore plugging. In this paper, asphaltene samples...

A High-Resolution Active Microwave Sensor for Contactless Pressure Measurement

In this paper, an active contacless microwave pressure sensor with high-quality factor for harsh environment applications are presented. The proposed sensor operates at 1.2GHz and consists of two parts of a reader antenn...

Optimized Design to reduce cogging torque in flux reversal motor

Flux Reversal Machine (FRM) integrates the features of permanent magnet synchronous machines and switch reluctance machines due to the presence of permanent magnets in the stator tooth and the robust structure of the rot...

Investigation of length reduction and radiation power enhancement of short-wavelength free electron laser

Free electron laser technology is one of the most suitable options to achieve high power, coherent radiation in the range of short wavelengths, especially XUV and X. One of the most important challenges in construction o...

Download PDF file
  • EP ID EP731165
  • DOI -
  • Views 78
  • Downloads 0

How To Cite

Mohammad Gholami, Hanif Kazerooni (2022). Numerical Evaluation of Electrohydrodynamic Flow and Particle Concentration Effects on the Wire-Plate Electrostatic Precipitator Efficiency. Applied Electromagnetics, 10(2), -. https://europub.co.uk/articles/-A-731165