О КОЛИЧЕСТВЕ ЧИСЕЛ, ПОРОЖДЕННЫХ ПРОСТЫМИ ИЗ АРИФМЕТИЧЕСКИХ ПРОГРЕССИЙ И НЕ ПРЕВОСХОДЯЩИХ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА

Journal Title: Проблемы анализа-Issues of Analysis - Year 2006, Vol 13, Issue

Abstract

It is given the asimptotic expansion for number positive integer that not exceed of the real number and divisible by prime number from arithmetical progression in this paper.

Authors and Affiliations

И. А. ИОНОВА, Б. М. ШИРОКОВ

Keywords

Related Articles

О ВЕСЕ НИГДЕ НЕ ПЛОТНЫХ ПОДМНОЖЕСТВ

In this paper we study the nd-weight of topological spaces. The relations between nd-weight, weight, density and cellularity are studied. The estimates for the nd-weight of the sum and the product of topological spaces a...

ОБ ОДНОМ СВОЙСТВЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ С ПСЕВДОИНТЕРВАЛЬНЫМИ ПЕРЕМЕННЫМИ

The optimization task with linear constraints of pseudo-interval variables is discussed in the article. It is proofed that if the task has optimal solution, then there is a solution that has not more than M non-zero vari...

DISTRIBUTION OF VALUES OF THE SUM OF UNITARY DIVISORS IN RESIDUE CLASSES

In this paper we prove the tauberian type theorem containing the asymptotic series for the Dirichlet series. We use this result to study distribution of sum of unitary divisors in residue classes coprime with a module. T...

Download PDF file
  • EP ID EP243944
  • DOI -
  • Views 104
  • Downloads 0

How To Cite

И. А. ИОНОВА, Б. М. ШИРОКОВ (2006). О КОЛИЧЕСТВЕ ЧИСЕЛ, ПОРОЖДЕННЫХ ПРОСТЫМИ ИЗ АРИФМЕТИЧЕСКИХ ПРОГРЕССИЙ И НЕ ПРЕВОСХОДЯЩИХ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА. Проблемы анализа-Issues of Analysis, 13(), 76-81. https://europub.co.uk/articles/-A-243944