On almost complex structures from classical linear connections
Journal Title: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica - Year 2017, Vol 71, Issue 1
Abstract
Let Mfm be the category of m-dimensional manifolds and local diffeomorphisms and let T be the tangent functor on Mfm. Let V be the category of real vector spaces and linear maps and let Vm be the category of m-dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors F:Vm→V admitting Mfm-natural operators J transforming classical linear connections ∇ on m-dimensional manifolds M into almost complex structures J(∇) on F(T)M=⋃x∈MF(TxM).
Authors and Affiliations
Jan Kurek, Włodzimierz Mikulski
On l1-preduals distant by 1
For every predual X of l1 such that the standard basis in l1 is weak* convergent, we give explicit models of all Banach spaces Y for which the Banach–Mazur distance d(X, Y ) = 1. As a by-product of our considerations, we...
Oscillation of third-order delay difference equations with negative damping term
The aim of this paper is to investigate the oscillatory and asymptotic behavior of solutions of a third-order delay difference equation. By using comparison theorems, we deduce oscillation of the difference equation from...
The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem
Using Baire's theorem, we give a very simple proof of a special version of the Lusin-Privalov theorem and deduce via Abel's theorem the Riemann-Cantor theorem on the uniqueness of the coefficients of pointwise converge...
On almost polynomial structures from classical linear connections
Let Mfm be the category of m-dimensional manifolds and local diffeomorphisms and let T be the tangent functor on Mfm. Let V be the category of real vector spaces and linear maps and let Vm be the category of m-dimensiona...
The generalized Day norm. Part I. Properties
In this paper we introduce a modification of the Day norm in c0(Γ) and investigate properties of this norm.