On Solutions of Neumann Boundary Value Problem for the Liénard Type Equation
Journal Title: Mathematical Modelling and Analysis - Year 2008, Vol 13, Issue 2
Abstract
We provide conditions on the functions [i]f(x) [/i]and [i]g(x)[/i], which ensure the existence of solutions to the Neumann boundary value problem for the equation [i]x''+f(x)[sup][/sup]x[sup]'2[/sup]+g(x)=0.[/i]
Authors and Affiliations
S. Atslega
Impact of Factor Rotation Methods on Simulation Composite Indicators
In this research one hypothesis about mathematical measure, which can be used as an additional tool for analysis and assessment Lithuania's economy tendencies, is verified. This additional measure has been constructed as...
Finite Difference Scheme for a Singularly Perturbed Parabolic Equations in the Presence of Initial and Boundary Layers
The grid approximation of an initial-boundary value problem is considered for a singularly perturbed parabolic reaction-diffusion equation. The second-order spatial derivative and the temporal derivative in the different...
A Separation Principle of Time-Varying Dynamical Systems: A Practical Stability Approach
In this paper we treat the problem of practical feedback stabilization for a class of nonlinear time-varying systems by means of an observer. A separation principle is given under a restriction about the perturbed term t...
Finite Element Solution of Boundary Value Problems with Nonlocal Jump Conditions
We consider stationary linear problems on non-connected layers with distinct material properties. Well posedness and the maximum principle (MP) for the differential problems are proved. A version of the finite element me...
A New Strategy for Choosing the Chebyshev-Gegenbauer Parameters in a Reconstruction Based on Asymptotic Analysis
The Gegenbauer reconstruction method, first proposed by Gottlieb et. al. in 1992, has been considered a useful technique for re-expanding finite series polynomial approximations while simultaneously avoiding Gibbs artifa...