Particle size analysis of concentrated phospholipid microemulsions: I. Total intensity light scattering
Journal Title: The AAPS Journal - Year 2000, Vol 2, Issue 2
Abstract
Water-in-oil phospholipid microemulsions prepared from a constant total surfactant/cosurfactant concentration of 25 wt% at four different lecithin/alcohol weight ratios (Km of 1∶1, 1.5∶1, 1.77∶1, and 1.94∶1) and containing water concentrations (or volume fractions) ranging from 2.0 to 26 wt% (or 0.04 to 0.26) have been examined at 298 K using total intensity light scattering. The data obtained were analysed using the hard-sphere model of Percus-Yevick, modified to account for the partitioning of the alcohol between the various phases. The light-scattering results showed that, regardless of the Km or the alcohol used, a minimum water concentration of at least 9 wt% was required for the formation of a microemulsion; although this value was reasonably constant for each of the alcohols investigated, there was a tendency for a slightly higher concentration of water to be required for microemulsion formation at higher Km values. Simple calculations suggested that a microemulsion was formed only when sufficient water was present to satisfy the hydration of both the phospholipid head groups and the hydroxyl groups of the cosurfactant associated with the droplet. At water concentrations lower than this minimum value, a cosolvent system was observed. In all systems above this minimum concentration, as the concentration of water increased, the size of the microemulsion droplets also increased. Surprisingly, however, there was little difference in the size of the microemulsion droplets obtained with the different alcohols, regardless of the Km, although for a particular alcohol there was some indication that the higher Km systems produced the slightly smaller droplets for an equivalent water concentration. There was also a suggestion that the more hydrophobic alcohols produced slightly smaller droplets than the more polar alcohols at the same Km.
Authors and Affiliations
Reza Aboofazeli, David J. Barlow, M. Jayne Lawrence
A Rational, Systematic Approach for the Development of Vaccine Formulations
With the continuous emergence of new infectious diseases and new strains of current diseases, such as the novel H1N1 influenza in 2009, in combination with expanding competition in the vaccine marketplace, the pressure t...
Characterization of the humanMDR1 gene
P-glycoprotein (Pgp), an ATP-dependent efflux transporter that protects the body from environmental toxins and xenobiotics, is encoded by the humanMDR1 gene. HumanMDR1 is located on chromosomal region 7q21. Although seve...
ADME of Antibody–Maytansinoid Conjugates
The concept of treating cancer with antibody-drug conjugates (ADCs) has gained momentum with the favorable activity and safety of trastuzumab emtansine (T-DM1), SAR3419, and lorvotuzumab mertansine (IMGN901). All three A...
In vitro–In Vivo Correlations: Tricks and Traps
In vitro–in vivo correlation (IVIVC) is a biopharmaceutical tool recommended to be used in development of formulation. When validated, it can speed up development of formulation, be used to fix dissolution limits...
Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease
Parkinson’s disease (PD) is a debilitating movement disorder resulting from a progressive degeneration of the nigrostriatal dopaminergic pathway and depletion of neurotransmitter dopamine in the striatum. Molecul...