Peramalan Jumlah Penumpang Kapal di Pelabuhan Balikpapan dengan SARIMA
Journal Title: Jurnal Statistika dan Komputasi - Year 2023, Vol 2, Issue 2
Abstract
Latar Belakang: Peramalan jumlah kedatangan penumpang kapal dalam negeri di pelabuhan dalam negeri sangat penting untuk antisipasi lonjakan penumpang. Tujuan: Tujuan dari penelitian ini adalah mendapatkan model terbaik untuk peramalan jumlah kedatangan penumpang kapal. Metode: Penelitian ini menggunakan metode Seasonal Autoregressive Integrated Moving Average (SARIMA). Data jumlah kedatangan penumpang kapal dalam negeri di Pelabuhan Balikpapan dari Januari 2017 sampai dengan Desember 2021. Root mean absolute error (RMSE) digunakan untuk membandingkan akurasi peramalan. Hasil: Model SARIMA yang dihasilkan untuk jumlah kedatangan penumpang kapal dalam negeri di Pelabuhan Balikpapan yaitu SARIMA(1,0,0)(1,0,0)12 dan SARIMA(1,0,0)(0,0,1)12 dengan RMSE masing-masing sebesar 9442.62 dan 9608.54. Kesimpulan: Model terbaik untuk peramalan jumlah kedatangan penumpang kapal di Pelabuhan Balikpapan adalah SARIMA(1,0,0)(1,0,0)12.
Authors and Affiliations
Nurhastivania Sohifatul Khoiriyah, Mega Silfiani, Resti Novelinda, Surya Muhammad Rezki
Application of Double Seasonal Autoregressive Integrated Moving Average (DSARIMA) for Stock Forecasting
Background: Stock price forecasting assists investors to anticipate risks and opportunities in making prudent investments and maximizing returns. Objective: This study aims to identify the most accurate model for stock...
Model Double Exponential Smoothing Dalam Peramalan Penerimaan Pajak Pemerintah Pusat Indonesia
Latar Belakang: Peramalan sebagai salah satu cara memprediksi suatu peristiwa atau nilai tertentu di masa depan dengan cara mempertimbangkan data di masa lalu. Peramalan dibutuhkan untuk memprediksi nilai total penerim...
Pengelompokan Faktor-Faktor yang Mempengaruhi Curah Hujan di Provinsi Sumatera Utara Menggunakan Metode Fuzzy C-Means
Latar Belakang: Di Indonesia, kondisi curah hujan dipengaruhi oleh berbagai faktor, termasuk kondisi fisiografis, pola angin, dan perubahan iklim. Kondisi curah hujan di Sumatera Utara pada tahun 2020 bervariasi di ber...
Penerapan Algoritma Self Organizing Maps (SOM) Dan K-Means Untuk Mengelompokkan Akseptor KB Di NTB
Latar Belakang: Salah satu permasalahan utama terkait penggunaan KB yaitu berhubungan dengan ketersediaan layanan kesehatan, sehingga untuk memberikan akses yang lebih baik kepada masyarakat terhadap informasi dan layana...
Penerapan Model Geographically Weighted Poisson Regression untuk Demam Berdarah Dengue Di Kabupaten Bojonegoro
Latar Belakang: Kasus Demam Berdarah Dengue (DBD) di Kabupaten Bojonegoro meningkat dari tahun 2017 sampai tahun 2019. Hal ini menjadi sulit karena wilayah geografis yang sangat luas di setiap Kecamatan. Untuk menga...