Predicting Student Success in Courses via Collaborative Filtering

Abstract

Based on their skills and interests, students’ success in courses may differ greatly. Predicting student success in courses before they take them may be important. For instance, students may choose elective courses that they are likely to pass with good grades. Besides, instructors may have an idea about the expected success of students in a class, and may restructure the course organization accordingly. In this paper, we propose a collaborative filtering-based method to estimate the future course grades of students. Besides, we further enhance the standard collaborative filtering by incorporating automated outlier elimination and GPA-based similarity filtering. We evaluate the proposed technique on a real dataset of course grades. The results indicate that we can estimate the student course grades with an average error rate of 0.26, and the proposed enhancements improve the error value by 16%.

Authors and Affiliations

Ali Cakmak| Department of Computer Science, Istanbul Sehir University, Kusbakisi Cad. No: 27, 34662, Uskudar, Istanbul, Turkey

Keywords

Related Articles

Intrusion Detection Forecasting Using Time Series for Improving Cyber Defence

The strength of time series modeling is generally not used in almost all current intrusion detection and prevention systems. By having time series models, system administrators will be able to better plan resource alloca...

SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal

Sleep apnea (SA) is the most commonly known sleeping disorder characterized by pauses of airflow to the lungs and often results in day and night time symptoms such as impaired concentration, depression, memory loss, snor...

Estimating of Compressive Strength of Concrete with Artificial Neural Network According to Concrete Mixture Ratio and Age

Compressive strength of concrete is one of the most important elements for an existing building and a new structure to be built. While obtaining the desired compressive strength of concrete with an appropriate mix and cu...

A fuzzy approach for determination of prostate cancer

Goal of this study is a design of a fuzzy expert system, its application aspects in the medicine area and its introduction for calculation of numeric value of prostate cancer risk. For this aim it was used prostate speci...

Epileptic State Detection: Pre-ictal, Inter-ictal, Ictal

Epileptic seizure detection and prediction from electroencephalography (EEG) is a vital area of research. In this study, Second-Order Difference Plot (SODP) is used to extract features based on consecutive difference of...

Download PDF file
  • EP ID EP815
  • DOI 10.18201/ijisae.2017526690
  • Views 464
  • Downloads 27

How To Cite

Ali Cakmak (2017). Predicting Student Success in Courses via Collaborative Filtering. International Journal of Intelligent Systems and Applications in Engineering, 5(1), 10-17. https://europub.co.uk/articles/-A-815