ProCbA: Protein Function Prediction based on Clique Analysis

Abstract

Protein function prediction based on protein-protein interactions (PPI) is one of the most important challenges of the post-Genomic era. Due to the fact that determining protein function by experimental techniques can be costly, function prediction has become an important challenge for computational biology and bioinformatics. Some researchers utilize graph- (or network-) based methods using PPI networks for unannotated proteins. The aim of this study is to increase the accuracy of the protein function prediction using two proposed methods. To predict protein functions, we propose a Protein Function Prediction based on Clique Analysis (ProCbA) and Protein Function Prediction on Neighborhood Counting using functional aggregation (ProNC-FA). Both ProCbA and ProNC-FA can predict the functions of unknown proteins. In addition, in ProNC-FA which does not include a new algorithm; we attempt to solve the essence of incomplete and noisy data of the PPI era in order to achieve a network with complete functional aggregation. The experimental results on MIPS data and the 17 different explained datasets validate the encouraging performance and the strength of both ProCbA and ProNC-FA on function prediction. Experimental result analysis demonstrates that both ProCbA and ProNC-FA are generally able to outperform all the other methods.

Authors and Affiliations

Mohammad Hossein Olyaee, Soudeh Behrouzinia, Mohammad Bagher Ghajehlo, Alireza Khanteymoori

Keywords

Related Articles

Molecular and Computational Analysis of Chlorophyll Pigment-binding Protein cp47 from Selected Species of Semi Arid Region of Western India

Photosynthesis means “synthesis with the help of light”, involves the composite functioning of various protein complexes. CP47 is a pigment-binding protein of PSII of a molecular mass of about 56 kDa. CP47, encoded by th...

Identification of Unique Water Molecules in Human GRK2 Protein with Bound and Unbound GβGγ Subunit: A Study by Structural Bioinformatics Method

The human G-protein coupled receptor kinase 2 (hGRK2) regulates the desensitization of beta-adrenergic receptors (β-AR), and its overexpression has been implicated in heart failure. The hGRK2 is a serine/ threonine kinas...

DNA Linear Block Codes: Generation, Error-Detection, and Error-Correction of DNA Codeword

In modern age, the increasing complexity of computation and communication technology is leading us towards the necessity of new paradigm. As a result, unconventional approach like DNA coding theory is gaining considerabl...

Facial Skin Disease Detection using Image Processing

Busy lifestyle, modernization, increasing pollution and unhealthy diet have led to problems which people are neglecting. Not drinking enough water, stress and hormonal changes are causing problems to skin. Causes may be...

Artificial Intelligence in Skin Cancer: A Literature Review from Diagnosis to Prevention and Beyond

Artificial Intelligence (AI) in medicine is quickly expanding, offering significant potential benefits in diagnosis and prognostication. While concerns may exist regarding its implementation, it is important for dermatol...

Download PDF file
  • EP ID EP724406
  • DOI https://doi.org/10.61797/ijbic.v2i1.211
  • Views 67
  • Downloads 0

How To Cite

Mohammad Hossein Olyaee, Soudeh Behrouzinia, Mohammad Bagher Ghajehlo, Alireza Khanteymoori (2023). ProCbA: Protein Function Prediction based on Clique Analysis. International Journal of Bioinformatics and Intelligent Computing, 2(1), -. https://europub.co.uk/articles/-A-724406