Recent improvement of silicon absorption in opto-electric devices
Journal Title: Opto-Electronic Advances - Year 2019, Vol 2, Issue 10
Abstract
Silicon dominates the contemporary electronic industry. However, being an indirect band-gap material, it is a poor absorber of light, which decreases the efficiency of Si-based photodetectors and photovoltaic devices. This review highlights recent studies performed towards improving the optical absorption of Si. A summary of recent theoretical approaches based on the first principle calculation has been provided. It is followed by an overview of recent experimental approaches including scattering, plasmon, hot electron, and near-field effects. The article concludes with a perspective on the future research direction of Si-based photodetectors and photovoltaic devices.
Authors and Affiliations
Takashi Yatsui
Tunable and reconfigurable metasurfaces and metadevices
Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applied t...
A review on control methodologies of disturbance rejections in optical telescope
Structural vibrations in Tip-Tilt modes usually affect the closed-loop performance of astronomically optical telescopes. In this paper, the state of art control methods—proportional integral (PI) control, linear quadrati...
Remote-mode microsphere nano-imaging: new boundaries for optical microscopes
Optical microscope is one of the most popular characterization techniques for general purposes in many fields. It is distinguished from the vacuum or tip-based imaging techniques for its flexibility, low cost, and fast s...
Fresnel incoherent correlation holography with single camera shot
Fresnel incoherent correlation holography (FINCH) is a self-interference based super-resolution three-dimensional imaging technique. FINCH in inline configuration requires an active phase modulator to record at least thr...
Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity
Orbital angular momentum (OAM) mode division provides a promising solution to push past the already exhausted available degrees of freedom available in conventional optical communications. Nevertheless, the practical dep...