Recent progress of membrane-based CO_2 capture from biogas and flue gas
Journal Title: Energy Environmental Protection - Year 2024, Vol 38, Issue 3
Abstract
Carbon capture technologies, including absorption, adsorption, and membrane separation, have emerged as one of the research hotspots, in the process of achieving carbon peaking and carbon neutrality goals. Membrane separation, which relies on the difference in gas permeability, offers advantages such as energy saving, high efficiency, ease of operation, and absence of secondary pollution, leading to significant advancements in recent years. Over the past few decades, researchers have reported a variety of different carbon capture membrane materials in the literature with CO_2 separation performance exceeding the Robeson upper bound. However, only a few of these membrane materials have been implemented in industrial processes or are currently under consideration for industrial-scale applications. In fact, many membrane studies have been conducted on a laboratory scale with small membrane areas, resulting in limited information on the practical applicability of membrane separation. This paper combines the industrial CO_2 separation or capture process to introduce the applications of both commercially available membranes and those still under development. It reviews the experimental progress and engineering application cases of membrane separation technology for biogas decarbonization and flue gas carbon capture. Finally, considering the existing challenges, the paper proposes suggestions for the future development direction of membrane separation carbon capture.
Authors and Affiliations
YIN Dengguo|College of Architecture and Environment, Sichuan University, China, Dongfang Boiler Co., Ltd., China, ZHOU Zhibin|Sinopec Nanjing Research Instituteof Chemical Industry Co., Ltd., China, WEI Jing|College of Architecture and Environment, Sichuan University, China, National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China, MA Yulei|College of Architecture and Environment, Sichuan University, China, National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China, QIN Zikang|College of Architecture and Environment, Sichuan University, China, National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China, DENG Min|College of Architecture and Environment, Sichuan University, China, National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China, WU Yuanming|Dongfang Boiler Co., Ltd., China, DU Wentao|Dongfang Boiler Co., Ltd., China, DAI Zhongde*|National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China,
Prediction and optimization of struvite recovery from wastewater by machine learning
The recovery of nitrogen and phosphorus from simulated wastewater in the form of struvite was investigated through a Machine Learning (ML)-based approach. The Extreme Gradient Boosting Algorithm (XGBoost) and Random Fore...
Development of an efficient 3AP-DMEA-butanol-water phase change absorbent for CO_2 capture
Controlling CO_2 emissions from low-concentration sources like coal-fired power plants and steel mills is crucial for achieving "carbon neutrality" . Amine-based CO_2 capture technology is a leading contender for industr...
Situation of treatment and resource utilization of rural domestic sewage and discussion of emerging contaminants
Promoting the resource utilization of rural domestic sewage is an important measure to improve the living environment in rural areas in China. In recent years, there has been an increasing focus on addressing the actual...
Biodegradation performance of mixed chlorinated volatile organic pollutants
The safe and low-carbon treatment of chlorinated volatile organic compounds (CVOCs) is a current challenge for air pollution control in petrochemical, medical and chemical industries. The bio-logical method is a green, e...
Research progress on catalytic oxidation technologies of gaseouselemental mercury in flue gases
Mercury catalytic oxidation technologies in recent studies are summarized in this study to highlight the present research development and future perspective of catalysts. The mercury oxidation catalysts are classified in...