Recent progress of membrane-based CO_2 capture from biogas and flue gas

Journal Title: Energy Environmental Protection - Year 2024, Vol 38, Issue 3

Abstract

Carbon capture technologies, including absorption, adsorption, and membrane separation, have emerged as one of the research hotspots, in the process of achieving carbon peaking and carbon neutrality goals. Membrane separation, which relies on the difference in gas permeability, offers advantages such as energy saving, high efficiency, ease of operation, and absence of secondary pollution, leading to significant advancements in recent years. Over the past few decades, researchers have reported a variety of different carbon capture membrane materials in the literature with CO_2 separation performance exceeding the Robeson upper bound. However, only a few of these membrane materials have been implemented in industrial processes or are currently under consideration for industrial-scale applications. In fact, many membrane studies have been conducted on a laboratory scale with small membrane areas, resulting in limited information on the practical applicability of membrane separation. This paper combines the industrial CO_2 separation or capture process to introduce the applications of both commercially available membranes and those still under development. It reviews the experimental progress and engineering application cases of membrane separation technology for biogas decarbonization and flue gas carbon capture. Finally, considering the existing challenges, the paper proposes suggestions for the future development direction of membrane separation carbon capture.

Authors and Affiliations

YIN Dengguo|College of Architecture and Environment, Sichuan University, China, Dongfang Boiler Co., Ltd., China, ZHOU Zhibin|Sinopec Nanjing Research Instituteof Chemical Industry Co., Ltd., China, WEI Jing|College of Architecture and Environment, Sichuan University, China, National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China, MA Yulei|College of Architecture and Environment, Sichuan University, China, National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China, QIN Zikang|College of Architecture and Environment, Sichuan University, China, National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China, DENG Min|College of Architecture and Environment, Sichuan University, China, National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China, WU Yuanming|Dongfang Boiler Co., Ltd., China, DU Wentao|Dongfang Boiler Co., Ltd., China, DAI Zhongde*|National Engineering Research Centre for Flue Gas Desulfurization, China, Carbon Neutral Technology Innovation Center of Sichuan, China, College of Carbon Neutrality Future Technology, Sichuan University, China,

Keywords

Related Articles

Advances in the removal of emerging contaminants from water mediated by chemically modified biochar

Emerging contaminants are pollutants with relatively low concentration but high toxicity. They can be enriched in living organisms and transferred to the human body through the food chain, posing a significant threat to...

Surface cleavage and electron donation mechanism of emerging contaminants excited by H_2O_2 assisted Cu-based catalyst

Toxic emerging contaminants (ECs) and non-toxic dissolved organic matter (DOM) are present in the source water. The key to purification of source water is to realize low cost and efficient priority removal of toxic emerg...

Research progress of chloride salt as heat transfer fluid in concentrating solar power plant

Solar energy is the most abundant clean renewable energy on the surface of earth. Solar energy utilization is the most important part of the global renewable energy development strategy. Coupling concentrating solar powe...

Study on phosphorous-doped cobalt-nitrogen-carbon catalysts for electrocatalytic reduction of carbon dioxide

The burning of fossil fuels has led to a rapid increase in the concentration of carbon dioxide (CO_2) in the atmosphere, resulting in a serious energy and environmental crisis. Electrocatalytic reduction of CO_2 to value...

Improving the quality and efficiency of biological nitrogen removal from domestic wastewater: Current situation and prospects

With the improvement of national and local sewage discharge standards, the upgrading and retrofitting of existing wastewater treatment systems become a major challenging task for wastewater treatment plants (WWTPs). Spec...

Download PDF file
  • EP ID EP737918
  • DOI 10.20078/j.eep.20240124
  • Views 45
  • Downloads 0

How To Cite

YIN Dengguo, ZHOU Zhibin, WEI Jing, MA Yulei, QIN Zikang, DENG Min, WU Yuanming, DU Wentao, DAI Zhongde* (2024). Recent progress of membrane-based CO_2 capture from biogas and flue gas. Energy Environmental Protection, 38(3), -. https://europub.co.uk/articles/-A-737918