Research progress on SCR catalysts for the synergistic removal of NO and VOCs from coal-fired power plants flue gas: A review
Journal Title: Energy Environmental Protection - Year 2023, Vol 37, Issue 2
Abstract
NO_x and VOCs emissions from coal-fired power plants account for roughly 30% of anthropogenic emissions and provide a severe challenge to air quality protection. Synergistic NO and VOCs removal from coal-fired power plants flue gas in the SCR zone can efficiently cut treatment costs, which needs scientific investigation and is of environmental benefits. This review describes the latest research development of SCR catalysts for the synergistic removal of NO and VOCs from coal-fired power plant flue gas. Currently, the studies are mainly associated with impregnation method, co-precipitation method, hydrothermal method, sol-gel method, template method and other ways to prepare multifunctional catalysts. Doping with transition metals/ nobel metals or selecting appropriate carriers will dramatically increase the amounts of acidic sites and reactive oxygen species on the surface, resulting in a rapid rise in synergistic removal capacity. However, multiple pollutants in the actual flue gas will interact on the catalyst surface. The interaction mechanism of multiple reactants and the effect of reaction conditions on the synergistic removal rate have also been focused on. To address the problems and challenges of current research, two powerful tools, in situ technology and DFT, can be applied to explore the synergistic catalytic reaction pathways and deactivation mechanisms, guiding the design of SCR catalysts with good redox activity, low by-products, high resistance to toxicity and regeneration. Current research on synergistic NO and VOCs elimination is mainly conducted in the laboratory. In the future, the theory of multi-pollutant synergistic control should be improved to realize the practical engineering applicationsfor the synergistic removal of NO_x and VOCs from complex flue gases.
Authors and Affiliations
CHEN Yin|School of Electric Power, South China University of Technology, China, Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, China, LIAO Yanfen*|School of Electric Power, South China University of Technology, China, Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, China, MA Xiaoqian|School of Electric Power, South China University of Technology, China, Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, China
Numerical simulation analysis of activated carbon injection adsorption in flue gas purification application
Sludge blending has become one of the means to transform the energy structure of coal-fired power plants. Based on the existing coal-fired flue gas system of Zhejiang Jinhua Ningneng Thermal Power Plant, this paper propo...
Advances in the removal of emerging contaminants from water mediated by chemically modified biochar
Emerging contaminants are pollutants with relatively low concentration but high toxicity. They can be enriched in living organisms and transferred to the human body through the food chain, posing a significant threat to...
TiO_2/g-C_3N_4 water absorption coupled photocatalytic degradation of isopropanol exhaust gas
Isopropanol, as a typical volatile organic compound released into the atmosphere, can cause harm to the environment and human health, and the coupling of aqueous phase absorption and photocatalysis is a useful technical...
Development of an efficient 3AP-DMEA-butanol-water phase change absorbent for CO_2 capture
Controlling CO_2 emissions from low-concentration sources like coal-fired power plants and steel mills is crucial for achieving "carbon neutrality" . Amine-based CO_2 capture technology is a leading contender for industr...
Research progress of fine particulate matter and ozone pollution under the background of "dual carbon" target
As the global climate change problem is becoming more and more serious, China has made the commitment to the "dual-carbon" target. At present, our country has not fundamentally solved the issue of PM_2.5 pollution. Meanw...