Silicon photonics for telecom and data-com applications
Journal Title: Opto-Electronic Advances - Year 2020, Vol 3, Issue 10
Abstract
In recent decades, silicon photonics has attracted much attention in telecom and data-com areas. Constituted of high refractive-index contrast waveguides on silicon-on-insulator (SOI), a variety of integrated photonic passive and active devices have been implemented supported by excellent optical properties of silicon in the mid-infrared spectrum. The main advantage of the silicon photonics is the ability to use complementary metal oxide semiconductor (CMOS) pro-cess-compatible fabrication technologies, resulting in high-volume production at low cost. On the other hand, explosively growing traffic in the telecom, data center and high-performance computer demands the data flow to have high speed, wide bandwidth, low cost, and high energy-efficiency, as well as the photonics and electronics to be integrated for ultra-fast data transfer in networks. In practical applications, silicon photonics started with optical interconnect transceivers in the data-com first, and has been now extended to innovative applications such as multi-port optical switches in the telecom network node and integrated optical phased arrays (OPAs) in light detection and ranging (LiDAR). This paper overviews the progresses of silicon photonics from four points reflecting the recent advances mentioned above. CMOS-based silicon photonic platform technologies, applications to optical transceiver in the data-com network, applications to multi-port optical switches in the telecom network and applications to OPA in LiDAR system.
Authors and Affiliations
Kiyoshi Asakawa*, Yoshimasa Sugimoto, Shigeru Nakamura
Mid-infrared all-fiber gain-switched pulsed laser at 3 μm
Mid-infrared (MIR) fiber pulsed lasers are of tremendous application interest in eye-safe LIDAR, spectroscopy, chemi-cal detection and medicine. So far, these MIR lasers largely required bulk optical elements, complex fr...
A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements
Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits. However, to provide stronger field confinement, larger wid...
Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra
We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4 liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the str...
Lanthanide-based downshifting layers tested in a solar car race
The mismatch between the AM1.5G spectrum and the photovoltaic (PV) cells absorption is one of the most limiting factors for PV performance. To overcome this constraint through the enhancement of solar energy harvesting,...
Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide
Despite the tremendous awareness of Rayleigh scattering characteristics and its considerable research interest for numerous fields, no report has been documented on the dynamic characteristics of spectrum evolution (SpE)...