Simulation of Natural Frequencies of Orange Fruit Using Finite Element Method

Journal Title: Journal of Agricultural Machinery - Year 2024, Vol 14, Issue 2

Abstract

IntroductionThe growing consumer demand for high-quality products has led to the development of new technologies for assessing the quality of agricultural products. Iran is the 9th largest orange producer in the world. Every year, large quantities of agricultural products lose their optimal quality due to mechanical and physical damage during various operations such as harvesting, packaging, transportation, sorting, processing, and storage. This study is performed to identify the natural frequencies and vibration modes of the Thomson orange fruit using finite element modal analysis by ANSYS software. In addition, physical properties including mass, volume, density, and principal dimensions were measured, and mechanical properties were determined using Instron Texture Profile Analysis. The dynamic behavior of the orange fruit was simulated using the pendulum impact test. Afterward, the obtained impact was applied to the orange fruit by force gauge and three-axis accelerometer sensors in both polar and equatorial directions. The three-dimensional geometric model of the orange fruit was drawn in the ANSYS software. After meshing and applying the boundary conditions, the first 20 modes and corresponding natural frequencies were obtained. Since the objective of this study was to identify the natural frequencies of the orange fruit, it was considered to have free movement and rotation in space. The results showed that the natural frequencies of orange fruit are in the range of 0 to 248.41 Hz. Knowledge of the texture characteristics and dynamic behavior of horticultural products is essential for the design and development of agricultural machinery. Furthermore, the design and development of agricultural machinery are directly related to the biological properties of agricultural products.Materials and MethodsThe Thomson orange variety was used in the present study. The oranges used for the experiments were harvested from the Citrus and Subtropical Fruits Research Institute in Ramsar, Iran, located at coordinates 50° 40′ E and 36° 52′ N. The oranges were subsequently divided into two groups: large (average diameter 82 mm) and small (average diameter 66 mm). Conducting the finite element analysis requires knowledge of the physical and mechanical properties of the flesh and skin of the orange fruit. The physical and mechanical properties of the tested samples include geometric dimensions, modulus of elasticity, Poisson’s ratio, and density. In the present study, the dynamic behavior of the orange fruit under dynamic loads was investigated by performing an impact test using a pendulum. The orange fruit was hung from the ceiling using a thin thread to perform experimental tests and extract the modal parameters. The orange samples were subjected to impact at three angles: 7° (below the yield point), 10° (at the dynamic yield point), and 20° (above the dynamic yield point).Results and DiscussionThe comparison of the experimental (laboratory) natural frequencies and simulation validates the simulation results. The experimental natural frequencies of the first, second, and third modes in the large-group oranges are 125.4, 146.9, and 180.4 Hz, respectively. Additionally, the simulation (modal) frequencies are 133.80, 146.16, and 196.66 Hz for the first three modes, respectively. The lowest and the highest differences were observed in the second (0.5%) and third (9.01%) modes, respectively. In the small-group oranges, the first, second, and third modes have experimental natural frequencies of 152.2, 188.8, and 242.2 Hz, respectively, and simulation frequencies are 167.79, 187.50, and 248.30 Hz. The second and first modes exhibited the smallest and largest disparities between experimental and simulated natural frequencies, respectively, at 0.68% and 10.24%.ConclusionWhile there are certain limitations, it is undeniable that Computer Aided Engineering (CAE) applications are advantageous for predicting the natural frequencies and vibration modes of spherical fruits such as oranges. Utilizing the obtained frequencies, especially the resonance frequency and the vibrational mode shape, enables us to avoid the resonance frequency in the actual transportation of oranges. This is possible through the implementation of suitable packaging and transportation methods, thereby mitigating the deterioration of fruit quality and ensuring an accurate prediction of its shelf life.

Authors and Affiliations

V. Kahrizi,E. Ahmadi,A. R. Shoshtari,

Keywords

Related Articles

Rapid and Non-destructive Estimation of Apple Tree NPK Contents based on Leaf Spectral Analysis

IntroductionApple is one of the most frequently consumed fruits in the world. It is a source of minerals, fiber, various biological compounds such as vitamin C, and phenolic compounds (natural antioxidants). The amount o...

Effects of Tillage Practices on Soil Penetration Resistance, Technical Parameters and Wheat Yield

This study was carried out to evaluate the effects of tillage practices (with different depths) on soil penetration resistance, technical parameters and grain yield of wheat crop. The experiment was conducted as a random...

Fabrication and Evaluation of Cellulose Containers from Rice Straw with Natural Coatings

IntroductionThe use of agricultural waste to produce biodegradable containers is an appropriate option to solve the problem of biomass accumulation resulting from the cultivation of crops such as rice. The highest amount...

A Network Model for Time Management in Overhaul of Sugarcane Harvester

Introduction Mechanized harvesting of sugarcane by harvesters and the lack of proper management of harvesting, increase the cost of production and eventually become unprofitable. In the case of sugarcane harvester, becau...

Comparison of Four Different Methods for Agricultural Positioning Using GPS and IMU

In this research, four different positioning methods were compared in order to evaluate their accuracy, using a remotely controlled robot on a specific route. These methods included: using a single GPS module, combining...

Download PDF file
  • EP ID EP736138
  • DOI https://doi.org/10.22067/jam.2023.80039.1137
  • Views 8
  • Downloads 0

How To Cite

V. Kahrizi, E. Ahmadi, A. R. Shoshtari, (2024). Simulation of Natural Frequencies of Orange Fruit Using Finite Element Method. Journal of Agricultural Machinery, 14(2), -. https://europub.co.uk/articles/-A-736138